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a b s t r a c t

This paper firstly reviews the cross efficiency evaluation method which is an extension tool of data
envelopment analysis (DEA), then we describe the main shortcomings when the ultimate average cross
efficiency scores are used to evaluate and rank the decision making units (DMUs). In this paper, we elim-
inate the assumption of average and utilize the Shannon entropy to determine the weights for ultimate
cross efficiency scores, and the procedures are introduced in detail. In the end, an empirical example is
illustrated to examine the validity of the proposed method. Some future research directions are also
pointed out.
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1. Introduction

Data envelopment analysis (DEA) is a non-parametric program-
ming technique for evaluating efficiency of a set of homogenous
decision making units (DMUs) with multiple inputs and multiple
outputs. It has been proven to be an effective approach in identify-
ing the best practice frontiers and ranking the DMUs. DEA has been
extensively applied in performance evaluation and benchmarking
of schools, hospitals, bank branches, production plants, and so on
(Charnes, Cooper, Lewin, & Seiford, 1994). However, traditional
DEA models, such as CCR model in Charnes, Cooper, and Rhodes
(1978) can simply classify the DMUs into two groups, namely effi-
cient DMUs and inefficient DMUs. Moreover, it is often possible in
traditional DEA models that some inefficient DMUs are in fact bet-
ter overall performers than some efficient ones. This is because of
the unrestricted weight flexibility problem in DEA by being in-
volved in an unreasonable self-rated scheme (Dyson & Thannas-
soulis, 1988; Wong & Beasley, 1990). The DMU under evaluation
heavily weighs few favorable measures and ignores other inputs
and outputs in order to maximize its own DEA efficiency.

The cross efficiency method was developed as a DEA extension
technique that could be utilized to identify efficient DMUs and to
rank DMUs using cross efficiency scores that are linked to all DMUs
(Sexton, Silkman, & Hogan, 1986). The main idea of the cross eval-
uation method is to use DEA in a peer evaluation instead of a self
evaluation. There are at least three main advantages for cross-
evaluation method. Firstly, it provides a unique ordering among
the DMUs (Sexton et al., 1986). Secondly, it eliminates unrealistic
weight schemes without requiring the elicitation of weight

restrictions from application area experts (Anderson, Hollings-
worth, & Inman, 2002). Finally, the cross evaluation method can
effectively differentiate between good and poor performers (Bous-
sofiane, Dyson, & Thanassoulis, 1991). Therefore the cross-evalua-
tion method has been widely used for ranking performance of
DMUs, for example, efficiency evaluations of nursing homes (Sex-
ton et al., 1986), selection of a flexible manufacturing system
(Shang & Sueyoshi, 1995), justification of advanced manufacturing
technology (Talluri & Yoon, 2000), diagnosing best intelligent mai-
ler (Kabassi, Virvou, & Despotis, 2003), and so on.

Although average cross efficiency has been widely used, there
are still several disadvantages for utilizing the final average cross
efficiency to evaluate and rank DMUs, like the losing association
with the weights by averaging among the cross efficiencies
(Despotis, 2002), which means that this method cannot clearly
provide the weights to help decision makers improve their perfor-
mance, especially, the average cross efficiency measure is not good
enough since it is not a Pareto solution. Considering the shortcom-
ings above, Wu, Liang, and Yang (2009) eliminate the average
assumption for determining the ultimate cross efficiency scores,
and DMUs are considered as the players in a cooperative game,
in which the characteristic function values of coalitions are defined
to compute the Shapley value of each DMU, and the common
weights associate with the imputation of the Shapley values are
used to determine the ultimate cross efficiency scores.

In the current paper, we will propose an approach based on
information entropy theory instead of calculating the average cross
efficiency scores. This approach has several advantages, for exam-
ple, in this method, the most productive scale size (MPSS) units
(Cooper, Seiford, & Tone, 2000) get the best rank and the interior
points of the smallest production possibility sets (PPSs) which
are inefficient in all models lie at the end of the ranking list (Solei-
mani & Zarepisheh, 2009). The rest of this paper is organized as fol-
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lows: Section 2 introduces the cross efficiency evaluation method.
The new method using Shannon entropy is proposed in Section 3.
Section 4 gives an illustrative example, and conclusion and re-
marks are shown in Section 5.

2. Cross-efficiency evaluation

Using the traditional denotations in DEA, we assume that there
are a set of n DMUs, and each DMUj (j = 1, 2, . . . , n) produces s dif-
ferent outputs using m different inputs which are denoted as xij

(i = 1, 2, . . . , m) and yrj (r = 1, 2, . . . , s), respectively. For any evalu-
ated DMUd (d = 1, 2, . . . , n), the efficiency score Edd can be calcu-
lated by using the following CCR model.

max
Xs

r¼1

lrdyrd ¼ Edd

s:t:
Xm

i¼1

xidxij �
Xs

r¼1

lrdyrj P 0; j ¼ 1;2; . . . ;n

Xm

j¼1

xidxid ¼ 1

xid P 0; i ¼ 1;2; . . . ;m

lrd P 0; r ¼ 1;2; . . . ; s:

ð1Þ

For each DMUd(d = 1, 2, . . . ,n), we can obtain a group of optimal
weights x�1d; . . . ;x�md; l�1d; . . . ;l�sd by solving the above model (1),
and the cross-efficiency of each DMUj using the weights of DMUd,
namely Edj, can be calculated as follows.

Edj ¼
Ps

r¼1l�rdyrjPm
i¼1x�idxij

;d; j ¼ 1;2; . . . ;n ð2Þ

As shown in the Table 1 of cross efficiency matrix (CEM), for
each column, Edj is the cross efficiency score of DMUj using the
weights that DMUd (j = 1, 2, . . . , n) has chosen. We can also find
that the elements in the diagonal are the special cases that can
be seen as self-evaluation.

For each DMUj (j = 1, 2, . . . , n), the average of all Edj (d = 1, 2, . . . ,
n), namely, Ej ¼ 1

n

Pn
d¼1Edj; ðj ¼ 1;2; . . . ;nÞ can be treated as a new

efficiency measure, that is, the cross-efficiency score for DMUj.

3. Determination of ultimate cross efficiency using Shannon
entropy

In this section, we will use the Shannon entropy in information
theory, which is a rather abstract mathematical concept and can be
used as a measure of uncertainty, to determine the ultimate cross
efficiency of each DMU. For the detail of Shannon entropy, we will
revisit in the following part, which also can be seen in (Soofi &
Ehsan, 1990).

3.1. Entropy and its related knowledge

Information entropy is a measure of uncertainty, which is firstly
introduced by Shannon in his paper of A Mathematical Theory of
Communication (Shannon, 1948), then it has been widely used in
many fields such as engineering, management and so on. Accord-
ing to the idea of information entropy, the number or quality of
information acquired from decision-making setting is one of the
determinants of accuracy and reliability of decision-making
problem. Entropy is therefore a very good scale when it is applied
to different cases of assessment or evaluation in different decision-
making process, and similarly, entropy can also be used to measure
the quantity of useful information provided by data itself.

Information entropy is a measurement of uncertainty of the sys-
tem state, when the system is in limited states with the probability
Pi (i = 1, 2, . . . , n) of each state, then the entropy of the system is

e ¼ �
Xn

i¼1

Pi log Pi ð3Þ

where

0 � Pi � 1;
Xn

i¼1

Pi¼1 ð4Þ

When all the states’ probabilities are the same
Pi ¼ 1

n ði ¼ 1;2; . . . ;nÞ, the entropy of the system is the maximum,
that is

eðP1; P2; . . . ; PnÞ � e
1
n
;
1
n
; . . . ;

1
n

� �
¼ logðnÞ ð5Þ

3.2. Entropy-based weights

According to the concept of entropy, it can be used to evaluate
the decision making units (DMUs). Assume there are m alternatives
and n evaluation criteria, thus the decision making matrix can be
defined as follows:

x11 x12 � � � x1n

x21 x22 � � � x2n

� � � � � � � � � � � �
xm1 xm2 � � � xmn

0
BBB@

1
CCCA

Now, we will introduce the steps for determining the weights of
each criterion based on the concept of entropy.

Step 1. Determination of the closeness
Firstly, we define the closeness between xij and its ideal value as

dij, and dij 2 [0, 1], i = 1, 2, . . . , m; j = 1, 2, . . . , n.

dij ¼

xij

max xi1; xi2; . . . ; xinf g ; positive indicators

xij

min xi1; xi2; . . . ; xinf g ; negtive indicators

8>><
>>:

ð6Þ

Step 2. Determination of the entropy values for each criterion
After the above definitions in Step 1, we can define the entropy

of the ith criterion as follows:

eðdiÞ ¼ �k
Xn

j¼1

fij ln fij ð7Þ

where fij ¼ dij=
Pn

i¼1dij; k ¼ 1= ln n.
If fij(j = 1, 2, . . . , n) are all the same, the entropy of the ith crite-

rion is the maximum, i.e., e(di) = 1. And if we assume fij = 0, then fij

ln fij = 0. Finally, if we normalize 1 � ei(i = 1, . . . , n), we can obtain
the final weights of each criterion (Wang & Lee, 2009).

Table 1
A generalized cross efficiency matrix.

Rating DMUd Rated DMUj

1 2 3 . . . n

1 E11 E12 E13 . . . E1n

2 E21 E22 E23 E2n

3 E31 E32 E33 . . . E3n

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

n En1 En2 En3 . . . Enn

Mean E1 E2 E3 . . . En
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