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This study presents a methodology to tackle robot tasks in a cost-efficient way. It poses amulti-objective optimi-
zation problem for trajectory planning of robotic arms that an efficient algorithmwill solve. Themethod finds the
minimum time to perform robot tasks while considering the physical constraints of the real working problem
and the economic issues participating in the process. This process also considers robotic system dynamics and
the presence of obstacles to avoid collisions. It generates an entire set of equally optimal solutions for each pro-
cess, the Pareto-optimal frontiers. They provide information about the trade-offs between the different decision
variables of the multi-objective optimization problem. This procedure can help managers in decision-making
processes regarding performing tasks, items to be manufactured or robotic services performed to meet with
the current demand, and also, to define an efficient scheduling. It improves productivity and allows firms to
stay competitive in rapid changing markets.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

An industrial robot is an automatically controlled, reprogrammable,
and multipurpose manipulator that industrial automation applications
use. A service robot is a robot that operates semi or fully autonomously
to perform useful services for humans and equipment.World robots are
rapidly growing in number in recent years. Process complexity deriving
from automation requires efficient algorithms that control them to
provide cost-efficient solutions (e.g., Kelly, Johnson, Dorsey, &
Blodgett, 2004). Specifically, in recent years researchers are working
hard in the trajectory planning of robot arms (e.g., Chen & Zhao,
2013; Chettibi, Lehtihet, Haddad, & Hanchi, 2002; Cho, Choi, & Lee,
2006; Gasparetto & Zanotto, 2010; Huang, Xu, & Liang, 2006; Suñer
et al., 2007; Rubio et al., 2010; Rubio, Llopis-Albert, Valero, & Suñer,
2015). Furthermore, mathematical optimization techniques solve
many engineering problems (e.g., Llopis-Albert & Capilla, 2010a,
2010b).

This study presents a new robotic technology to address robotic
systems' cost-effectiveness through a multi-objective optimization

problem for robotic arm trajectory planning, which an efficient algo-
rithm solves. Themethod finds theminimum time trajectory to perform
robot taskswhile considering the physical constraints and the economic
issues participating in the process. Themethodology also allows analyz-
ing the trade-off between the different decision variables through the
Pareto-optimal frontiers. A solution belongs to the Pareto optimal fron-
tier if an objective does not improve without adversely affecting at least
one other objective. This methodology allows an immediate change, a
quality improvement of the products, an increase in productivity, and
a reduction of cycle times, which may increase opportunities to react
to market developments and receptivity. The procedure overcomes
the limitations of economic analysis methods that can currently assess
robotic systems cost-effectiveness in production lines and robot
services.

2. Multi-objective optimization

Many real-world design tasks involve complex multi-objective opti-
mization problems of various competing design specifications and
constraints that make a single design highly improbable. Therefore, a
trade-off among the conflicting design objectives is necessary. A
multi-objective optimization affects several non-commensurable and
often competing objectives, cost functions, or performance functions
within a feasible decision variable space. This study follows above opti-
mization model because, for example, a minimum time trajectory to
produce an item leads to lower costs in energy consumption. Therefore,
a trade-off exists between executable time and costs. The multi-
objective optimization problem solves the collision-free trajectory-
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planning problem of robotic arms while considering the economic
issues participating in the process. The algorithm, according to previous
works (Rubio, Valero, Suñer, & Mata, 2009; Rubio, Valero, Suñer, &
Cuadrado, 2012; Rubio et al., 2015; Valero, Mata, & Besa, 2006), returns
robot's minimum total traveling time. This time has to do with produc-
tivity and flexibility, because it accelerates operation or execution time
of the process. Problem constraints are the torque, power, jerk (vari-
ables to do with work quality, accuracy, and equipment maintenance),
and energy consumption (related to savings). Optimization problem
constraints require a fulfillment because minimum-time algorithms
have discontinuous values of acceleration and torques leading to
dynamic problems during trajectory performance. The imposition of
smooth trajectories can solve the problem by using spline functions in
path and trajectory planning. The jerk constraint is crucial for working
with precision and without vibrations, and affects control system and
joints and bars' wearing. These methods enable the errors, the stresses
(in robot's actuators and mechanical structure), and the resonance
frequencies to shrink during trajectory tracking.

The economic objective function is the following:

Max B ¼ 1
1þ rð ÞT

Xn
p¼1

Pp−Cp
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" #
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where B is the objective function that requiresmaximization and repre-
sents the current value of the net benefit from a generic robot task (€),
which is the revenue of the items or services performed minus total
costs; Pp is the market unitary price of the item or service p (€); r is
the annual discount rate; T represents the number of years; Cp is the uni-
tary cost to perform the task p (€), ranging from costs of raw materials,
energy, amortization, labor force, and maintenance, taxes to direct and
indirect costs; and Np(t) is a function accounting for the number of
tasks per hour:

Np tð Þ ¼ K
t Skð Þμ : ð2Þ

Tasks' set Sk to perform the item or service (p) constitutes the work
load, where k represents tasks' number. In t Skð Þ ¼ ∑ jϵSk t j (task time), K
is a constant that has to do with the current number of working hours
per year. Parameter μ refers to economic environment and market
seasonality.

The robot arm develops each of these tasks, using certain time to de-
scribe the optimal trajectory. Then the algorithm returns robot arm's
minimum time to perform the task p (tminp), while considering the
time of the other tasks as constant. The lower the time that robot uses
to perform its task, the greater the number of tasks per hour. Then,
the cumulative time of all tasks is the following:

t Skð Þ ¼ tminp þ
Xk

j∉Srobot

t j: ð3Þ

3. Results of the application of methodology to different examples

This study applies multi-objective optimization methodology to dif-
ferent examples following those by Rubio et al. (2012). This study uses
as a model the PUMA 560 robot, which stands for Programmable
Universal Machine for Assembly.

Five examples provide positive results with sequences between 32
and 57 intermediate configurations between the initial and final ones,
using different physical working environments (see Rubio et al.,
2012). The robot uses different working constraint values for each actu-
ator. Table 1 presents algorithm results, that is, the execution time for
the robot to perform robot task trajectory.

Subsequently, this study analyzes the economic issues regarding
robot tasks. The study supposes a task cost of 0.8 € (without considering
energy cost) and a price of 1€ for the five examples. When the study
considers energy consumption cost, the examples have different costs.
This research defines and adds a cost of 0.0676 €/kWh to the total
costs of 0.8 €. For clarity purposes, only one shift of 8 h appears (365
workingdays in a year), andbenefits B cover a period of one year. Differ-
ent number of items or services per year arise for each case, because
they present different minimum execution times (tmin). The time of
the other tasks to perform the item or service (i.e., the summation of

times in Eq. (3), ∑
k

j∉Srobot
t j

 !
is 90 s. Therefore, different cases present

different benefits. For instance, the case 3_s_s, which has no constraints
in both the jerk and the energy consumed, presents themaximum ben-
efits per year (23243 €). Conversely, case 2_5_95, with severe physical
constraints, shows the minimum benefits (22962 €).

As an additional example, this study considers the performance of
three different services. This exercise illustrates benefit loss because of
not using efficient algorithms. The Pareto frontiers represent this benefit
loss for the three different services. The services differ in their cumula-
tive performance time but share the same execution time of the robot
arm (tminp). Then the study uses the minimum trajectory time of case
3_s_s for all items, i.e., 2.27 s. The cumulative time of the Service 1 =
90 s; Service 2 = 100 s; and Service 3 = 80 s. These services also differ
in the total costs (without considering energy costs), prices, and values
of the parameter μ, which intends to simulate different economic envi-
ronments andmarket seasonality. Then, the total cost of Service 1= 0.8
€; Service 2 = 0.82 €; and Service 3 = 0.84 €, while the prices are
Service 1 = 1.0 €; Service 2 = 1.05 €; and Service 3 = 1.02 €. The
parameter μ takes the values of 0.6, 0.5, and 0.55, respectively for each
service. In this case, t(Sk) is a cubic function of tminp.

In this scenario where the market conditions do not change and
without using the efficient algorithm a benefit loss exists. This is be-
cause robot arm may present higher execution times. Instead, the
multi-objective optimization algorithm allows obtaining the Pareto
frontiers (i.e., the minimum time to perform the robot tasks), while
providing information about decision variable trade-offs.

The trade-off between the benefits and the execution time for the
case 3_s_s (i.e., the Pareto frontier) appears in Fig. 1. Note that the re-
sults obtained with the optimization procedure lead to lower working
times and therefore greater annual revenues.

Table 1
Execution times (s) for the different examples solved with physical constraints.

Case Execution time (s) Case Execution time (s)

1_s_s 3.79 4_5_s 18.28
1_s_75 22.55 4_10_s 14.51
1_5_s 19.27 4_25_s 10.69
1_5_75 25.76 4_5_s 18.28
2_s_s 5.14 4_10_s 14.51
2_s_200 5.15 4_25_s 10.69
2_s_175 5.3 4_50_s 8.49
2_s_150 5.62 4_100_s 6.74
2_s_125 6.42 4_1000_s 3.21
2_s_100 12.25 4_s_s 2.41
2_s_95 21.08 4_5_40 18.65
2_5_s 23.05 4_s_40 9.94
2_5_95 26.35 5_s_s 3.08
3_s_s 2.27 5_s_40 9.18
3_s_50 7.34 5_5_s 15.91
3_5_s 14.82 5_5_40 15.93
3_5_50 17.94

Nomenclature used. Case: numberexample_X_Y. The first number indicates the example
solved, the X position indicates the value of a physical constraint-jerk- and the Y position
indicates the value of energy consumed. Letter s in any position means without that
constrain.
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