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a b s t r a c t

In this study, we consider the stochastic capacitated lot sizing problem with controllable processing
times where processing times can be reduced in return for extra compression cost. We assume that the
compression cost function is a convex function as it may reflect increasing marginal costs of larger
reductions and may be more appropriate when the resource life, energy consumption or carbon
emission are taken into consideration. We consider this problem under static uncertainty strategy and α
service level constraints. We first introduce a nonlinear mixed integer programming formulation of the
problem, and use the recent advances in second order cone programming to strengthen it and then solve
by a commercial solver. Our computational experiments show that taking the processing times as
constant may lead to more costly production plans, and the value of controllable processing times
becomes more evident for a stochastic environment with a limited capacity. Moreover, we observe that
controllable processing times increase the solution flexibility and provide a better solution in most of the
problem instances, although the largest improvements are obtained when setup costs are high and the
system has medium sized capacities.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the lot sizing problemwith controllable
processing times where demand follows a stochastic process and
processing times of jobs can be controlled in return for extra cost
(compression cost). Processing time of a job can be controlled (and
reduced) by changing the machine speed, allocating extra manpower,
subcontracting, overloading, consuming additional money or energy.
Although these options are available in many real life production and
inventory systems, in the traditional studies on the lot sizing problem,
processing times of jobs are assumed as constant.

Since the seminal paper of Wagner and Whitin [40], the lot
sizing problem and its extensions have been studied widely in the
literature (see [13,23] for a detailed review on the variants of the lot
sizing problem). In the classical lot sizing problem, it is assumed
that the demand of each period is known with certainty although
this is not the case for most of the production and inventory
systems and approximating the demand precisely may be very
difficult. In the stochastic lot sizing problem, this assumption is
relaxed but the probability distribution of the demand is assumed
as known.

As reducing processing time of a job is equivalent to increasing
production capacity, subcontracting, overloading or capacity acquisition

can be seen as special cases of the controllable processing times. There
are studies in the literature that consider the lot sizing problem with
subcontracting (or outsourcing) [3,10,18] or capacity acquisition (or
expansion) [1,17,22]. However, in all these studies costs of these
options are assumed as linear or concave. This assumption makes it
possible to extend the classical extreme point or optimal solution pro-
perties for these cases. In our study, we assume that the compression
cost is a convex function of the compression amount.

Controllable processing times are well studied in the context of
scheduling. Earlier studies on this subject assume linear compression
costs as adding nonlinear terms to the objective (total cost) function
may make the problem more difficult [14]. However, as it is stated in
recent studies, reducing processing times gets harder (and more
expensive) as the compression amount increases in many applica-
tions [14,2]. For example, by increasing machine speed, processing
times can be reduced, but this also decreases life of the tool and an
additional tooling cost is incurred. Moreover, increasing the machine
speed may also increase the energy consumption of the facility.
Another example is a transportation system in which trucks may be
overloaded or their speeds could be increased in return for extra cost
due to increasing fuel consumption or limiting the carbon emission.
Thus, considering a convex compression cost function is realistic
since a convex function represents increasing marginal costs and
may limit higher usage of the resource due to environmental issues.

In our study, we consider the following convex compression cost
function for period t: γtðktÞ ¼ κtðktÞa=b where kt40 is the total
compression amount in period t, κtZ0 and aZb40, a; bAZþ .
Note that, for a4b and κt40, γt is strictly convex. This function can
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represent increasing marginal cost of compressing processing times
in larger amounts. Moreover, this function can be related to a
(convex) resource consumption function [25,28]. Suppose that one
additional unit of the resource costs κt and for compressing the
processing time by kt units, additional k

a=b
t units of resource should

be allocated. Thus, in this context, compression cost represents
resource consumption cost and the resource may be a continuous
nonrenewable resource such as energy, fuel or catalyzer. With the
recent advances in convex programming techniques, many com-
mercial solvers (like IBM ILOG CPLEX) can now solve second-order
cone programs (SOCP). In this study, we make use of this technique
and formulate the problem as SOCP so that it can be solved by a
commercial solver.

The contributions of this paper are threefold:

� To the best of our knowledge, this is the first study that considers
the stochastic lot sizing problem with controllable processing
times. Although this option is applicable to many real life systems,
the processing times are assumed as constant in the existing
literature on lot sizing problems.

� The inclusion of a nonlinear compression cost function com-
plicates the problem formulation significantly. Therefore, we
utilize the recent advances in second-order cone programming
to alleviate this difficulty, so that the proposed conic formula-
tions could be solved by a commercial solver in a reasonable
computation time instead of relying on a heuristic approach.

� Since assuming fixed processing times unnecessarily limits the
solution flexibility, we conduct an extensive computational experi-
ments to identify the situations where controlling the processing
times improves the overall production cost substantially.

The rest of the paper is organized as follows. In the next section,
we briefly review the related literature. In Section 3, we formulate
the problem and in Section 4, we strengthen the formulation using
the second-order conic strengthening. In Section 5, we present the
results of our computational experiments. We first compare alter-
native conic formulations presented in Section 5, afterwards we
investigate the impact of controllable processing times on produc-
tion costs. In Section 6, conclusions and future research directions
are discussed.

2. Literature review

Here, we first review the studies on stochastic lot sizing problems.
Silver [30] suggests a heuristic solution procedure for solving the
stochastic lot sizing problem. Laserre et al. [16] consider the
stochastic capacitated lot sizing problem with inventory bounds
and chance constraints on inventory. They show that solving this
problem is equivalent to solving a deterministic lot sizing problem.
Bookbinder and Tan [5] study the stochastic uncapacitated lot sizing
problem with α-service level constraints under three different
strategies (static uncertainty, dynamic uncertainty and static-
dynamic uncertainty). Service level α represents the probability that
inventory will not be negative. In other words, it means that with
probability α, the demand of any period will be satisfied on time.
Under the static uncertainty decision rule, which is the strategy that
will be used in our study, all the decisions (production and inventory
decisions) are taken at the beginning of the planning horizon (frozen
schedule). The authors formulate the problem and show that their
model is equivalent to the deterministic problem by showing the
correspondence between the terms of these two formulations.

Service level constraints are mostly used in place of shortage or
backlogging costs in the stochastic lot sizing problems. Since shor-
tages may lead to loss of customer goodwill or delays on the other
parts of the system, it may be hard to estimate the backlogging or

shortage costs in the real life production and inventory systems.
Rather than considering the backlogging cost as a part of the total
cost function, a specified level of service (in terms of availability of
stock) can be assured by service level constraints and when the
desired service level is high, backlogging costs can be omitted. This
situation makes the usage of service level constraints more popular
in the real life systems [5,19,6]. A detailed investigation of different
service level constraints can be found in Chen and Krass [6].

Vargas [38] studies (the uncapacitated version of) the problem
of Bookbinder and Tan [5] but rather than using service level
constraints he assumes that there is a penalty cost for backlogging,
the cost components are time varying and there is a fixed lead
time. He develops a stochastic dynamic programming algorithm,
which is tractable when the demand follows a normal distribution.
Sox [31] studies the uncapacitated lot sizing problemwith random
demand and non-stationary costs. He assumes that the distribu-
tion of demand is known for each period and considers the static-
uncertainty model, but uses penalty costs instead of service level
constraints. He formulates the problem as an MIP with nonlinear
objective (cost) function and develops an algorithm that resembles
the Wagner–Whitin algorithm.

In the static-dynamic uncertainty strategy of Bookbinder and
Tan [5], the replenishment periods are determined first, and then
replenishment amounts are decided at the beginning of these
periods. They also suggest a heuristic two-stage solution method
for solving this problem. Tarím and Kingsman [32] consider the
same problem and formulate it as MIP. Moreover, Özen et al. [20]
develop a non-polynomial dynamic programming algorithm to
solve the same problem. Recently, Tunç et al. [36] reformulate the
problem as MIP by using alternative decision variables and Rossi
et al. [24] propose an MIP formulation based on the piecewise
linear approximation of the total cost function, for different vari-
ants of this problem.

In the dynamic uncertainty strategy, production decision for
any period is made at the beginning of that period. Dynamic and
static-dynamic strategies are criticized due to the system nervous-
ness they cause; supply chain coordination may be problematic
under these strategies since the production decision for each
period is not known until the beginning of the period [34,35].

There are studies in the literature, in which instead of α service
level, fill rate criterion (β service level) is used. Fill rate can be defined
as the proportion of demand that is filled from available stock on
hand. Thus, this measure also includes information about the back-
ordering size. Tempelmeier [33] proposed a heuristic approach to
solve the multi-item capacitated stochastic lot-sizing problem under
fill rate constraint. Helber et al. [10] consider the multi-item stochastic
capacitated lot sizing problem under a new service level measure,
called as δ-service-level. This service level reflects both the size of the
backorders and waiting time of the customers and can be defined as
the expected percentage of the maximum possible demand-weighted
waiting time that a customer is protected against. The authors assume
that the cost components are time invariant and there is an overtime
choice with linear costs for each period. They develop a nonlinear
model and approximate it by two different linear models.

There are also studies in the literature that consider the lot sizing
problemwith production rate decisions [41] or with quadratic quality
loss functions [12]. However, they consider the problem under an
infinite horizon assumption.

Another topic related to our study is controllable processing
times, which is well studied in the context of scheduling. One of the
earliest studies on scheduling with controllable processing times is
conducted by Vickson [39]. Kayan and Aktürk [14] and Aktürk et al.
[2] consider a CNC machine scheduling problem with controllable
processing times and convex compression costs. Jansen and Mas-
trolilli [11] develop approximation schemes, Gürel et al. [9] use an
anticipative approach to form an initial solution, Türkcan et al. [37]
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