The dual decomposition of aggregation functions and its application in welfare economics

José Luis García-Lapresta a,*, Ricardo Alberto Marques Pereira b

a PRESAD Research Group, IMUVA, Departamento de Economía Aplicada, Universidad de Valladolid, Avenida Valle de Esgueva 6, 47011 Valladolid, Spain
b Dipartimento di Economia e Management, Università degli Studi di Trento, Via Inama 5, TN 38122, Trento, Italy

Received 3 February 2015; received in revised form 2 September 2015; accepted 2 September 2015
Available online 7 September 2015

Abstract
In this paper, we review the role of self-duality in the theory of aggregation functions, the dual decomposition of aggregation functions into a self-dual core and an anti-self-dual remainder, and some applications to welfare, inequality, and poverty measures.

© 2015 Elsevier B.V. All rights reserved.

Keywords: Aggregation functions; Self-duality; Dual decomposition; Inequality; Welfare; Poverty

1. Introduction

In the context of aggregation functions, self-duality is an important property (see Beliakov et al. [3] and Grabisch et al. [16]). Self-dual aggregation functions satisfy $A(1 - x) = 1 - A(x)$ for every $x \in [0, 1]$. In other words, the aggregate value of the transformed inputs coincides with the transformed aggregate value of the original inputs. This means that the aggregation function is unbiased relatively to the higher or lower value of its inputs.

In the aggregation of reciprocal preference relations, for instance, self-duality ensures the reciprocity of the aggregate preference relation (see García-Lapresta and Llamazares [12]).

Silvert [24] introduced symmetric sums, a class of self-dual aggregation functions with two variables, within the context of his characterization of self-duality (see also Dubois and Prade [8] and Calvo et al. [6, p. 32]).

García-Lapresta and Marques Pereira [13,14] proposed a method that associates a self-dual aggregation function to any aggregation function. This method improves the one given by Silvert [24] in a number of ways (see García-Lapresta and Marques Pereira [14, Sect. 4]).


* Corresponding author.
E-mail addresses: lapresta@eco.uva.es (J.L. García-Lapresta), ricalb.marper@unitn.it (R.A. Marques Pereira).

http://dx.doi.org/10.1016/j.fss.2015.09.003
0165-0114/© 2015 Elsevier B.V. All rights reserved.
The paper is organized as follows. Section 2 reviews basic notions regarding aggregation functions and their dual decomposition, with a particular focus on exponential means and OWA functions. Section 3 discusses some applications of the dual decomposition to welfare economics, and Section 4 contains some concluding remarks.

2. Aggregation functions

We now present notation and basic definitions regarding aggregation functions on \([0, 1]^n\), with \(n \in \mathbb{N}\) and \(n \geq 2\) throughout the text. For further details the interested reader is referred to Fodor and Roubens [10], Calvo et al. [6], Beliakov et al. [3], García-Lapresta and Marques Pereira [14] and Grabisch et al. [16].

Vectors in \([0, 1]^n\) are denoted as \(x = (x_1, \ldots, x_n)\), \(0 = (0, \ldots, 0)\), \(1 = (1, \ldots, 1)\). Accordingly, for every \(x \in [0, 1]\), we have \(x \cdot 1 = (x, \ldots, x)\). Given \(x, y \in [0, 1]^n\), by \(x \geq y\) we mean \(x_i \geq y_i\) for every \(i \in \{1, \ldots, n\}\), and by \(x > y\) we mean \(x \geq y\) and \(x \neq y\). Given \(x \in [0, 1]^n\), the increasing and decreasing reorderings of the coordinates of \(x\) are indicated as \(x_{(1)} \leq \cdots \leq x_{(n)}\) and \(x_{[1]} \geq \cdots \geq x_{[n]}\), respectively. In particular, \(x_{(1)} = \min\{x_1, \ldots, x_n\} = x_{[n]}\) and \(x_{(n)} = \max\{x_1, \ldots, x_n\} = x_{[1]}\). Clearly, \(x_{[k]} = x_{n-k+1}\), for every \(k \in \{1, \ldots, n\}\). In general, given a permutation \(\sigma\) on \(\{1, \ldots, n\}\), we denote \(x_\sigma = (x_{\sigma(1)}, \ldots, x_{\sigma(n)})\). The arithmetic mean of \(x\) is denoted by \(\mu(x)\).

**Definition 1.** Let \(A : [0, 1]^n \rightarrow \mathbb{R}\) be a function.

1. \(A\) is idempotent if for every \(x \in [0, 1]\) it holds that \(A(x \cdot 1) = x\).
2. \(A\) is symmetric if for every permutation \(\sigma\) on \(\{1, \ldots, n\}\) and every \(x \in [0, 1]^n\) it holds that \(A(x_\sigma) = A(x)\).
3. \(A\) is monotonic if for all \(x, y \in [0, 1]^n\) it holds that \(x \geq y \Rightarrow A(x) \geq A(y)\).
4. \(A\) is strictly monotonic if for all \(x, y \in [0, 1]^n\) it holds that \(x > y \Rightarrow A(x) > A(y)\).
5. \(A\) is self-dual if for every \(x \in [0, 1]^n\) it holds that \(A(1 - x) = 1 - A(x)\).
6. \(A\) is anti-self-dual if for every \(x \in [0, 1]^n\) it holds that \(A(1 - x) = A(x)\).
7. \(A\) is invariant for translations if for every \(x \in [0, 1]^n\) it holds that \(A(x + t \cdot 1) = A(x)\) for every \(t \in \mathbb{R}\) such that \(x + t \cdot 1 \in [0, 1]^n\).
8. \(A\) is stable for translations (or shift-invariant) if for every \(x \in [0, 1]^n\) it holds that \(A(x + t \cdot 1) = A(x) + t\) for every \(t \in \mathbb{R}\) such that \(x + t \cdot 1 \in [0, 1]^n\).

**Definition 2.** Let \((A^{(k)})_{k \in \mathbb{N}}\) be a sequence of functions, with \(A^{(k)} : [0, 1]^k \rightarrow \mathbb{R}\) and \(A^{(1)}(x) = x\) for every \(x \in [0, 1]\). \((A^{(k)})_{k \in \mathbb{N}}\) is invariant for replications (or strongly idempotent) if for all \(x \in [0, 1]^n\) and any number of replications \(m \in \mathbb{N}\) of \(x\) it holds that

\[
A^{(m\cdot n)}(\underbrace{x, \ldots, x}_m) = A^{(n)}(x).
\]

**Definition 3.** Consider the binary relation \(\succ\) on \([0, 1]^n\), defined as

\[
x \succ y \iff \sum_{i=1}^n x_i = \sum_{i=1}^n y_i \text{ and } \sum_{i=1}^k x_{(i)} \leq \sum_{i=1}^k y_{(i)},
\]

for every \(k \in \{1, \ldots, n - 1\}\).

1. A function \(A : [0, 1]^n \rightarrow [0, 1]\) is \(S\)-convex if for all \(x, y \in [0, 1]^n\):

\[
x \succ y \Rightarrow A(x) \geq A(y).
\]

2. A function \(A : [0, 1]^n \rightarrow [0, 1]\) is strictly \(S\)-convex if for all \(x, y \in [0, 1]^n\):

\[
x \succ y \Rightarrow A(x) > A(y),
\]

where \(x \succ y\) means \(x \succ y\) and \(x \neq y\).
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات