Dynamic return predictability in the Russian stock market

Jyri Kinnunen *

School of Business, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta, Finland

Article info

Article history:
Received 12 July 2012
Received in revised form 2 October 2012
Accepted 16 December 2012
Available online 22 December 2012

JEL classification:
G12
G15

Keywords:
Predictability
Autocorrelation
Volatility
Trading volume
Risk-return trade-off
Russia

1. Introduction

Asset pricing models such as Merton's (1973) intertemporal CAPM suggest that expected excess returns can be time-varying and predictable if conditional risk sensitivities or reward-to-risk coefficients change over time. While recent studies find support for the intertemporal risk-return relation (Brandt and Wang, 2010; Guo and Whitelaw, 2006; Nyberg, 2012), past returns should not have explanatory power for expected returns if the pricing model is correct and the financial market is efficient. In practice, lagged returns still often help to forecast future returns (see Bollerslev et al., 1988; Ghysels et al., 2005). Explanations for this apparent feature – stock returns exhibit serial correlation – range from nonsynchronous trading induced spurious autocorrelation (Lo and MacKinlay, 1990) to autocorrelation caused by a relation between conditional mean and variance processes (Hong, 1991).1

1 For more explanations for autocorrelation in stock returns, see Campbell et al. (1997).
Recently Kinnunen (2012) finds that market-level persistence in the US stock market return increases during periods of low volatility, leading to a failure of the conditional CAPM. Since volatility serves as a proxy for information flow (Andersen, 1996), it appears that asset pricing explanations fail when there is less new information to be subsumed in stock prices. By testing this explanation in the Russian stock market, which is one of the largest emerging stock markets, this paper considers this insight in a drastically different market environment. Whereas the US stock market can be assumed to be efficient and stable, features such as poor corporate governance (Black et al., 2006) and liquidity risk (Bekaert et al., 2007) characterize emerging markets. The Russian financial market is not an exception: its short history includes colorful economic and political events (for an overview, see Goriaev and Zabotkin, 2006).

In developing stock markets, the inadequacy of a pure risk premia explanation and the role of return autocorrelation are likely to be highlighted. Harvey (1995a, 1995b), for example, reports that the levels of return predictability and serial correlation observed in emerging stock market returns are both higher than those found in developed markets. De Santis and Imrohoroglu (1997) find significant first-lag autocorrelations in selected emerging market returns, but report simultaneously only weak support for a risk-return explanation. However, emerging market asset pricing studies often omit a proxy for information flow (measured by volatility). The empirical model is able to capture considerable market-level persistence in the US stock market return increases (Andersen, 1996), it appears that asset pricing explanations fail when there is less new information to be subsumed in stock prices. By testing this explanation in the Russian stock market, which is one of the largest emerging stock markets, this paper considers this insight in a drastically different market environment. Whereas the US stock market can be assumed to be efficient and stable, features such as poor corporate governance (Black et al., 2006) and liquidity risk (Bekaert et al., 2007) characterize emerging markets. The Russian financial market is not an exception: its short history includes colorful economic and political events (for an overview, see Goriaev and Zabotkin, 2006).

The difficulty of choosing an adequate equilibrium model for emerging market returns includes the question of whether the global or local market risk should command a risk premium. In other words, whether a country’s financial market is integrated with world capital markets. Roll and Pukthuanthong (2009) find that the degree of global market integration has increased for most countries. Chambet and Gibson (2008) and Bekaert et al. (2011), on the other hand, report that, irrespective of improvements, emerging markets are still at least partially segmented. Goriaev and Zabotkin (2006) report a significant influence of the global equity market’s performance on the Russian stock market using rolling regressions. Saleem and Vaihekoski (2008) provide similar support using a conditional modeling approach. However, both studies report that the Russian stock market appears to be partially segmented. Additional factors may also command risk premiums in emerging markets. For example, the Russian economy, as with many other emerging economies, depends heavily on commodity prices. Basher and Sadorsky (2006) and Goriaev and Zabotkin (2006) find that oil price changes affect stock returns in various emerging markets and Russia, respectively.

The contribution of this study is two-fold. First, using monthly Russian stock market data from 1999 to 2012, I find that the empirical model is able to capture considerable fluctuations in the source of return predictability in both economically and statistically significant way. For an emerging market such as Russia, a pure asset pricing model explanation for expected returns is insufficient. Any realistic model for emerging stock market returns has to recognize significant autocorrelation in returns. In Russia, the relative weight of a conditional multifactor model and autocorrelation in predicting the aggregate return fluctuates with information flow (measured by volatility). The empirical model fits the data better than benchmark models or the feedback trading model of Sentana and Wadhwani (1992) and the volume-autocorrelation model of Campbell et al. (1993). The results comport with Kinnunen (2012), who analyze the US stock market using daily data.

---

2 My aim is not to relate autocorrelation to market efficiency. It is, however, worth noting that return predictability using past prices does not necessarily indicate market inefficiency as it may not be economically exploitable due to transaction costs.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات