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a b s t r a c t

Two Ant Colony Optimization algorithms are proposed to tackle multiobjective structural optimization
problems with an additional constraint. A cardinality constraint is introduced in order to limit the num-
ber of distinct values of the design variables appearing in any candidate solution. Such constraint is
directly enforced when an ant builds a candidate solution, while the other mechanical constraints are
handled by means of an adaptive penalty method (APM). The test-problems are composed by structural
optimization problems with discrete design variables, and the objectives are to minimize both the struc-
ture’s weight and its maximum nodal displacement. The Pareto sets generated in the computational
experiments are evaluated by means of performance metrics, and the obtained designs are also compared
with solutions available from single-objective studies in the literature.

� 2014 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

Frequently in structural design problems, one is interested in
finding the minimal weight of a framed structure subject to stress,
displacements, or other constraints. In fact, besides these con-
straints, the problem of optimizing a framed structure can be for-
mulated considering multiple and conflicting objective functions,
for example, to minimize the weight of the structure and its nodal
displacements.

In practice, the design variables are often to be chosen from
commercially available sizes and/or types leading to a discrete
optimization problem which is usually harder than its continuous
counterpart. In fact, techniques from mathematical programming
which are used in the continuous case must be adapted to deal
with the discrete variables. Any attempt to ‘‘round’’ or substitute
those obtained values by the ‘‘closest’’ available commercial sizes
can potentially make the design infeasible (violating some con-
straint) or with unnecessarily degraded performance. Thus, the
use of nature inspired metaheuristics, such as Ant Colony Optimi-
zation (ACO), becomes attractive.

Besides, it is a common practice in structural optimization to
group certain sizing or shape variables into a single design variable.
This procedure is used when symmetry conditions are to be
imposed in the final design, and also to reduce the total number
of design variables leading to a ‘‘smaller’’ search space. However,

the effectiveness of this procedure depends on the designer’s skill,
and previous experience is valuable at this point in order to allo-
cate members/variables to a group. As a result, it would be useful
to the designer to leave to the optimizer algorithm the task of
deciding how to group members and/or design variables. In addi-
tion, if the designer were able to limit the number of the different
design variables (such as cross-sectional areas) he/she could
achieve economies of bulk purchasing, and simplify the construc-
tion of the structure [1]. Those points can be achieved by introduc-
ing a cardinality constraint, in which the designer is able to enforce
the maximum number of distinct design variables appearing in any
candidate solution.

In [2], an ant colony approach was proposed to solve discrete
and multiobjective structural optimization problems, where two
ant colony algorithms equipped with an adaptive penalty method
were compared. The algorithms proposed presented good perfor-
mance according to the qualities expected for non-dominated solu-
tion sets.

In order to extend the research presented in [2], here, a cardi-
nality constraint will be considered to solve the practically relevant
multiobjective structural optimization problem. The two ant col-
ony algorithms, MOAS and MOACS, will be modified to enforce
the cardinality constraint. In this new implementation, the user
is able to prescribe the maximum number m of different sizes or
types he/she is willing to use in a particular design.

Furthermore, in order to incorporate the decision making pro-
cess, we illustrate the use of a multicriteria decision method to
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assist the decision maker in choosing the preferred Pareto-optimal
solution. The Multicriteria Tournament Method (MTD) [3] is used
in an a posteriori preference articulation approach to select the final
solution of the multiobjective optimization problem.

This paper is organized as follows. Section 2 describes the mul-
tiobjective optimization problem and Section 3 the multiobjective
structural optimization problem. Section 4 presents how the cardi-
nality constraints are introduced in the structural optimization
problem. Section 5 presents the ant colony metaheuristic. Section
6 describes the proposed ant colony algorithms and Section 6.1
details the adaptations in the process of solution construction so
as to enforce the cardinality constraints. In Section 7a multicriteria
decision method is presented so as to illustrate the use of a deci-
sion technique to assist the decision maker. The computational
experiments are described in Section 8 and the paper ends with
a Concluding Remarks section.

2. Multiobjective optimization

In multiobjective optimization problem (MOO) several objec-
tives have to be simultaneously optimized. Without loss of gener-
ality, the MOOs considered here can be formulated as

minimize f iðxÞ i ¼ 1; . . . ; k;

subject to gpðxÞ 6 0; p ¼ 1; . . . ;m;

xðLÞj 6 xj 6 xðUÞj ; j ¼ 1; . . . ; n:

ð1Þ

where we have kðP 2Þ objective functions f i to be minimized, with
fðxÞ denoting the vector of objective functions. A solution x is the
vector of n decision variables: x ¼ ðx1; x2; . . . ; xnÞ. The feasible region
is defined by S :¼ fx : xðLÞ 6 x 6 xðUÞ; gpðxÞ 6 0g, where x is called
a feasible candidate solution whenever x 2 S. The image of the fea-
sible region is called feasible objective region, denoted by Zð¼ fðSÞÞ.
Its elements are the points z ¼ ðz1; z2; . . . ; zkÞT in the objective space,
with zi ¼ f iðxÞ, for all x 2 S.

Usually, the objective functions are conflicting and possibly
non-commensurable; hence there is no single solution that is opti-
mal with respect to all objectives. In this case there is a set of alter-
natives that are superior to the remainder when all the objectives
are considered. This set, composed by the so-called non-dominated
solutions, provides many options to the decision-maker.

Assuming a problem in which all objectives should be mini-
mized, a solution x 2 S dominates another solution x0 2 S (x is
non-dominated by x0) when

f iðxÞ 6 f iðx0Þ 8i 2 f1; . . . ; kg and 9j 2 f1; . . . ; kg : f jðxÞ < f jðx0Þ;
ð2Þ

i.e., the solution x is no worse than x0 in all objectives and better in
at least one of them. Notice that all possible pairwise solutions must
be compared in order to find those that are non-dominated. Finally,
the Pareto-optimal set is the set of non-dominated solutions, and the
corresponding image in the objective space defines the Pareto front,
which contains the best collection of solutions found for the
problem.

3. Multiobjective structural optimization

We are interested in finding a set of discrete cross-sectional areas
A ¼ fA1;A2; . . . ;ANg which minimizes both the total weight wðAÞ of
a given truss (pin-jointed) structure and the maximum displace-
ment dðAÞ of its nodes, subject to stress constraints. Notice that
the first objective (total weight) corresponds to the material cost
of the structure while the second one (maximum nodal displace-
ment) is associated with mechanical performance. It is not hard to
see that those objectives are conflicting and non-commensurable.

Formally, the problem can be expressed as minimizing both
functions

wðAÞ ¼
XN

k¼1

cAkLk ð3Þ

dðAÞ ¼ maxðjui;ljÞ; ð4Þ

subject to the (normalized) stress constraints

jsj;lj
sadm
� 1 6 0: ð5Þ

In (3), Ai 2 T is the cross-sectional area of the ith bar, T is a table
of commercially available cross sectional areas, N is the number of
bars in the truss structure, Lk is the length of the kth bar, and c is
the specific weight of the material. In (4), ui;l is the nodal displace-
ment of the ith translational degree of freedom with 1 6 i 6 M, and
1 6 l 6 NL, where NL is the number of load cases applied to the
structure. In (5), sj is the stress at the jth bar, and sadm is the allow-
able stress for the material.

Although the function wðAÞ from Eq. (3) is simple, the function
dðAÞ (Eq. (4)) and the constraints are complex implicit functions of
the design variables A, and they require the solution of the equilib-
rium equations of the discrete finite element model, which can be
written in the linear case as

KðAÞul ¼ f l; 1 6 l 6 NL; ð6Þ

where K is the symmetric and positive-definite stiffness matrix of
the structure, and ul and f l are the vector of nodal displacements
and the vector of nodal forces for the lth load condition, respec-
tively. For each load condition, the system (Eq. (6)) should be solved
for the displacement field and the stress in the jth bar is then calcu-
lated according to Hooke’s Law as

sj;l ¼ EdðulÞ; ð7Þ

where E is the Young’s modulus of the material and d is the unit
change in length of the bar.

4. A cardinality constraint in structural optimization

It is clear that the optimal solution will usually employ as many
sizes as the number of design variables defined for the problem.
Variable linking, a common procedure which groups different
design parameters of the problem in a single design variable,
allows for a reduction in the total number of design variables
and frequently also in the complexity of the search problem. This
procedure is also useful, for instance, when symmetry conditions
are to be enforced. Notice that each choice of design variable link-
ing leads to a particular optimization problem with, consequently,
a different optimal solution. Although it may be simple to define
the groups in order to enforce the symmetry conditions of the
structure, in general the choice (made a priori by the analyst) of
which variables should be grouped together is not trivial. As a
result, the final set of independent design variables may be far
from optimal and the corresponding optimal solution more expen-
sive than necessary, due to inadequate design variable linking.

The solution adopted here provides the designer with the pos-
sibility of enforcing the maximum number of different sizes to be
used in a given problem, and transfers to the search technique
the task of finding a good grouping for the design variables. This
constraint, called a cardinality constraint, originally introduced
by means of a genetic algorithm encoding in [4] and latter applied
to structural optimization problems in [1,5] would allow for:
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