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a  b  s  t  r  a  c  t

This  paper  presents  the first  heuristic  method  for solving  the  satisfiability  problem  in  the  logic  with
approximate  conditional  probabilities.  This  logic  is  very  suitable  for  representing  and  reasoning  with
uncertain  knowledge  and  for  modeling  default  reasoning.  The  solution  space  consists  of variables,  which
are arrays  of 0 and  1  and the  associated  probabilities.  These  probabilities  belong  to a  recursive  non-
Archimedean  Hardy  field  which  contains  all rational  functions  of  a fixed  positive  infinitesimal.  Our
method  is based  on  the  bee  colony  optimizationmeta-heuristic.  The  proposed  procedure  chooses  vari-
ables  from  the solution  space and determines  their probabilities  combining  some  other  fast  heuristics
for  solving  the  obtained  linear  system  of  inequalities.  Experimental  evaluation  shows  a  high  percent-
age  of success  in  proving  the satisfiability  of randomly  generated  formulas.  We have  also  showed  great
advantage  in  using  a heuristic  approach  compared  to standard  linear  solver.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Working with uncertain knowledge has been well documented problem in
mathematical logic and computer science, since the first works of Leibnitz and Bool.
The unique solution to this problem has not been found yet, but there are many
ideas and different variants of solutions for particular problems, that are used in
artificial intelligence. Many of the formalisms for representing and reasoning with
uncertainty are based on probabilistic logics [1–10]. These logics are extensions
of  classical logic with probabilistic operators. Satisfiability problem in these logics
(PSAT) can be reduced to linear programming problem. However, solving it by any
standard linear solver is inapplicable in practice due to the complexity of the prob-
lem. For example, the application of Fourier–Motzkin elimination procedure yields
the  exponential growth in the number of inequalities in the system. Therefore, the
application of some other techniques for solving this problem, such as different
types of meta-heuristics, could prove very useful.

Using meta-heuristics for solving satisfiability problems is not a new idea. The
most interesting problems in propositional logic are satisfiability problem (SAT)
and maximum satisfiability problem (MAX-SAT), i.e., the problem of determining
the  maximum number of clauses of a given Boolean formula in conjunctive normal
form, that can be made true by an assignment of truth values to the variables. Several
methods based on different heuristics have been developed for SAT and MAX-SAT.
Many of those methods are based on local search procedure and some of them
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are presented in [11–14]. Heuristics based on swarm intelligence, like Ant Colony
Optimization (ACO) or Bee Swarm Optimization (BSO), were also applied to SAT
[15,16]. For this type of problem probabilistic approach is presented in [17]. Genetic
Algorithm (GA) is another approach used for dealing with SAT and/or MAX-SAT
[18,19], and it is also combined with some other heuristics [20]. In probabilistic logics
presented by Nilson in [21], Fagin et al. [1] or by Rašković et al. [2], local search based
heuristics [22], Tabu Search (TS) [23], GA [24,25], Variable Neighbourhood Search
(VNS) [26], and combination of GA and VNS [27] were used for solving PSAT.

Here, we discus the satisfiability problem in approximate conditional probabil-
ities logic described by Rašković et al. in [4]. We denote this version of satisfiability
problem with CPSAT-ε. The main differences between PSAT and CPSAT-ε are:

• CPSAT-ε  involves conditional probability operator on the contrary to PSAT.
• Probabilities of formulas in CPSAT-ε may take infinitesimal values, and not only

real-values as in PSAT.

The first use of infinitesimal was by Leibniz, when he introduced differentials. Later,
Robinson [28] showed how infinitely large and infinitesimal numbers can be rigor-
ously defined and used. Characteristics of CPSAT-ε, given above, do not allow us to
use the existing methods for PSAT that work with formulas containing real-valued
unconditional probabilities only.

The logic, described in [4], enriches the propositional calculus with probabilis-
tic operators which are applied to propositional formulas: CP�s(˛, ˇ), CP�s(˛, ˇ) and
CP≈s(˛, ˇ), with the intended meaning that the conditional probability of  ̨ given ˇ
is  “at least s”, “at most s” and “approximately s”, respectively. This way of knowledge
representation and reasoning can be widely used. One of the most obvious examples
would be the process of reaching diagnosis in medicine. Occurrence of some symp-
toms with adequate certainty represented in percents, leads to conclusion that a
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specific disease is in question. In addition, in [4] is presented a method for modelling
default reasoning with logic with conditional probabilities approximately close to
1.  That type of non-monotonic reasoning supports reasoning with incomplete infor-
mation and can be used in many areas such as medicine, legal reasoning, regulations,
specifications of systems and software, etc.

To the best of our knowledge, CPSAT-ε for the logic described in [4] has no prac-
tically usable automated solver, and our main effort was to apply meta-heuristics,
in  particular Bee Colony Optimization (BCO), for solving CPSAT-ε in this logic. BCO is
a  meta-heuristic technique, which showed very good performance in solving hard
optimization problems [29–37]. It is a stochastic, random-search technique that
belongs to the class of population-based algorithms. This technique is inspired by
the nectar collection process of honey bees from nature. Until now, BCO has not been
applied to a class of problems involving search for a solution, only to the problems
that already have some feasible solutions and one wants to improve them. The first
application of BCO to SAT-type problems was not the only reason for selecting this
method to deal with CPSAT-ε. Our experience with other meta-heuristics shows that
better performance is achieved with population based methods since they allow the
degradation in solution quality. Local search based methods are easily trapped in
neighborhoods of the current best solution that may not lead to the global best, i.e.,
to  the solution that satisfies the considered formula. On the other hand, evolution-
ary methods involve more randomness that may  diversify the search and require
more time to get to the desired final solution.

To address CPSAT-ε we  used the improved variant of BCO, denoted by BCOi and
proposed in [38]. The original BCO method is constructive: each bee starts from an
empty solution and builds feasible solution through the algorithm steps belonging
to  the single iteration. Contrary to the constructive version, at the beginning of BCOi
iteration some complete solutions are assigned to the bees. The role of each bee
is  to modify the assigned solution with an aim to improve its quality. Since the
modification rules are highly problem dependent, the BCOi concept proposed in [38]
needed significant adjustment to be applicable to CPSAT-ε problem. Constructive
BCO in CPSAT-ε is not applicable since it is not possible to estimate the quality of final
solution based on the partial solutions, i.e., truth values and probabilities assigned
to  a subset of variables. Our procedure begins with generating random potential
solutions for each bee, and in the next steps it tries to improve them, using some
additional methods and stochastic moves based on a roulette wheel, in an attempt
to produce the real solution. The experimental results obtained by BCOi for CPSAT-ε
were compared with those obtained using Fourier–Motzkin elimination procedure
and  thus demonstrated the superiority of BCOi method.

The rest of the paper is organized as follows. Section 2 gives a brief descrip-
tion  of logic with approximate conditional probability. Section 3 briefly outlines the
BCO algorithm, while Section 4 describes our implementation of BCOi for solving
CPSAT-ε.  Section 5 contains some experimental results. Section 6 is devoted to the
conclusions.

2. Approximate conditional probabilities

In this section, we present the brief formal introduction to the
CPSAT-ε (for a more detailed description see [4]).

The Hardy field Q[ε] is a recursive non-Archimedean field which
contains all rational functions of a fixed positive infinitesimal ε
which belongs to a nonstandard elementary extension *R of the
standard real numbers [39,28]. An element ε of *R is an infinitesimal
if |ε| < 1

n for every natural number n. Some examples of infinites-
imal are (in ascending order, if ε > 0): ε3 + ε4, ε2 − 5ε6, ε

100 , 85ε, or
negative infinitesimals: −ε, −ε2, . . . Field Q[ε] contains all rational
numbers. Let S be the unit interval of the Q[ε] and Q[0, 1] denote
the set of rational numbers from [0, 1].

The language of the logic with approximate conditional proba-
bility consists of: a countable set Var = {p, q, r, . . . } of propositional
letters, the classical connectives ¬, and ∧, and binary probabilis-
tic operators (CP�s)s∈S , (CP�s)s∈S , and (CP≈r)r∈Q [0,1]. The set ForC of
classical propositional formulas is defined as usual. The set ForS

P of
probabilistic propositional formulas is the smallest set Y containing
all formulas of the forms:

• CP�s(˛, ˇ) for ˛,  ̌ ∈ ForC, s ∈ S,
• CP�s(˛, ˇ) for ˛,  ̌ ∈ ForC, s ∈ S and
• CP≈r(˛, ˇ) for ˛,  ̌ ∈ ForC, r ∈ Q[0, 1],

and closed under the formation rules: if A belongs to Y, then ¬A
is in Y, and if A and B belong to Y, then (A ∧ B) is in Y. Note that
neither mixing of pure propositional formulas and probabilistic for-
mulas, nor nested probabilistic operators are allowed. For example,

 ̨ ∧ CP�s(˛, ˇ) and CP�s(˛, CP�r(ˇ, �)) are not well formed for-
mulas, while CP>0.5+ε(p ∧ q ∧ r, p ∨ r) ∧ CP�0.8−ε2 (¬p ∧ r, ¬p) and
¬CP≈0.75((p ∨ q) → r, ¬ p ∧ ¬ q) are examples of correct formulas. The
other classical connectives (∨, →,  ↔)  can be defined as usual. In the
rest of the paper ±A is either A or ¬A, while:

• CP<s(˛, ˇ) denotes ¬CP�s(˛, ˇ) for ˛,  ̌ ∈ ForC, s ∈ S,
• CP>s(˛, ˇ) denotes ¬CP�s(˛, ˇ) for ˛,  ̌ ∈ ForC, s ∈ S,
• CP=s(˛, ˇ) denotes CP�s(˛, ˇ) ∧ CP�s(˛, ˇ) for ˛,  ̌ ∈ ForC, s ∈ S.

It should be noted that CP� and CP� are not interdefinable since the
appropriate equivalence breaks down when the probability of the
condition equals 0.

We  can perform some easy transformations which will reduce
the satisfiability problem to checking probabilistic formulas of sim-
pler form. Let A be a probabilistic formula and p1, . . .,  pn be the
list of all propositional letters from A. An atom a of A is a formula
±p1 ∧ . . . ∧ ± pn. Note that all pairs of different atoms are mutually
exclusive. We  use At(A) to denote the set of all atoms from A, and
n to denote the number of propositional letters from A. Obviously,
|At(A)| = 2n.

Using propositional reasoning it is easy to show that every prob-
abilistic formula A is equivalent to a formula: DNF(A) = ∨m

i=1

∧ki
j=1 ±

Xi,j(p1, . . .,  pn) called a disjunctive normal form of A, where:

• Xi,j ∈ {CP�s, CP�s}s∈S ∪ {CP≈r}r∈Q [0,1],
• Xi,j(p1, . . .,  pn) denotes that propositional formulas which are in

the scope of the probabilistic operator Xi,j are in the complete dis-
junctive normal form, i.e., propositional formulas are disjunctions
of the atoms of A.

Let � : At(A) → S be a probability measure. We  introduce the
following abbreviations:

• xi denotes the measure of the atom ai ∈ At(A), i = 1, . . .,  2n,
• ai �  ̨ means that the atom ai appears in the complete disjunctive

normal form of a classical propositional formula ˛,
• ∑

(˛) denotes
∑

ai∈At(A):ai�˛xi, and

• C
∑

(˛, ˇ) denotes

∑
(˛∧ˇ)∑

(ˇ)
.

[˛] denotes the set of atoms that satisfy ˛. Since [˛] =
∪ai∈At(A):ai�˛[ai], different atoms are mutually exclusive (i.e.,
[ai]∩ [aj] = ∅ for i /= j).

Now, we can easily define that the formula A is satisfiable if the
following holds:

1. if A ∈ ForC it is satisfiable if (∃ ai ∈ At(A))ai � A,
2. if A has a form CP�s(˛, ˇ) it is satisfiable if either

∑
(ˇ) = 0 and

s = 1 or
∑

(ˇ) > 0 and C
∑

(˛, ˇ) � s,
3. if A has a form CP�s(˛, ˇ) it is satisfiable if either

∑
(ˇ) = 0 or∑

(ˇ) > 0 and C
∑

(˛, ˇ) � s,
4. if A has a form CP≈r(˛, ˇ) it is satisfiable if either

∑
(ˇ) = 0 and

r = 1 or
∑

(ˇ) > 0 and for every positive integer n, C
∑

(˛, ˇ) ∈
[max(0, r − 1

n ), min(1,  r + 1
n )],

5. ¬A is satisfiable if A is not satisfiable,
6. A ∧ B is satisfiable if A is satisfiable and B is satisfiable.

Therefore, for every conditional probabilistic formula (±CP�s(˛,
ˇ), ±CP�s(˛, ˇ), and ±CP≈r(˛, ˇ)) from DNF(A) we can distinguish
two cases:

1. the probability of  ̌ is zero, in which case



http://isiarticles.com/article/46195

