A category approach to relation preserving functions in rough set theory

Murat Diker
Hacettepe University, Department of Mathematics, 06532 Beytepe Ankara, Turkey

A R T I C L E I N F O
Article history:
Received 16 November 2013
Received in revised form 10 July 2014
Accepted 11 July 2014
Available online 17 July 2014

Keywords:
Approximation operator
Definability
Dierelation
Multi-source information system
Relation preserving function
Rough set
Texture space

A B S T R A C T
The category Rel whose objects are all pairs \((U, r)\), where \(r\) is a relation on a universe \(U\), and whose morphisms are relation-preserving mappings is a canonical example in category theory. One of the convenient categories for rough set systems on a single universe is Rel since the objects of Rel are approximation spaces. The morphisms of a ground category dfTex whose objects are textures can be characterized by definability. Therefore, we particularly investigate a textual counterpart of the category Rel denoted by dRel of textual approximation spaces and dierelation preserving difunctions. In this respect, we prove that dRel is a topological category over dfTex and Rel is a full subcategory of dRel. In view of the textual arguments, we show that the preimage of a definable subset of an approximation space with respect to a relation preserving function is also definable in the category Rere of reflexive relations. Furthermore, we denote the category of all information system homomorphisms and all information systems by IS and we show that the category ISO of all information system homomorphisms and all object-irreducible information systems where the attribute functions are surjective is embeddable into Rel.

© 2014 Elsevier Inc. All rights reserved.

0. Introduction
It is well-known that the category Rel whose objects are all pairs \((U, r)\), where \(r\) is a relation on a universe \(U\), and whose morphisms are relation-preserving mappings is a canonical example in category theory [1]. In rough set theory, the pair \((U, r)\), as an object of Rel, is called an approximation space. Recently, Juan Lu et al. studied a different version of this category denoted by M-IndisSp whose objects are \(M\)-indiscernibility spaces and the morphisms \(M\)-equivalence relation-preserving mappings where \(M\) is a fixed index set for the families of equivalence relations on a given universe [26]. If \(M\) is countable, then \(M\)-indiscernibility spaces are multipurpose approximation systems defined by Khan and Banerjee in [23]. Essentially, if the index set \(M\) is a singleton, then M-IndisSp turns into a category of approximation spaces and equivalence relations which is a full subcategory of Rel. In fact, an \(M\)-indiscernibility space is a dynamic relational system defined by Pagliani in [27]. Some applications on dynamic relational systems can be found in [22,37,38]. Recently, there have been developments in the subject of textual rough sets [11–15]. A ground category in text space theory is dfTex whose objects are textures and morphisms are difunctions. Difunctions can be characterized using the prime concept of definability of rough set theory. That is, for any two textures \((U, \mathcal{U})\) and \((V, \mathcal{V})\), a dierelation \((r, R) : (U, \mathcal{U}) \rightarrow (V, \mathcal{V})\) is a morphism in dfTex if and only if every subset \(A \in \mathcal{U}\) is \((r, R)\)-definable [8]. In the context of rough sets, this result can be stated as a fact that a relation \(r : U \rightarrow V\) is a function if and only if every subset of \(V\) is \(r\)-definable. Recall that the presections with respect
to direlations are natural generalizations of lower and upper approximations based on relations. Hence, from the textural point of view, one can observe that the lower and upper approximations of a set \(A \) can be given using the point-free formulations \(\text{app}_\text{L}(A) = U \setminus r^{-1}(V \setminus A) \) and \(\text{app}_\text{U}(A) = r^{-1}(A) \) for any subset \(A \subseteq V \) where \(r : U \rightarrow V \) is a relation [15]. These arguments help us to focus our attention on a new category denoted by \(\text{diRel} \) of textural approximation spaces and direlation preserving difunctions. One of the important full subcategories of \(\text{Rel} \) is the category of sets and reflexive relations denoted by \(\text{Rere} \) [1]. A textural approach shows that the preimage of a definable subset of an approximation space with respect to a relation preserving function is also definable in the category \(\text{Rere} \). On the other hand, invariance of upper and lower approximations under information system homomorphisms are studied in [36]. Here, we note that information systems and information system homomorphisms form a category denoted by \(\text{IS} \). An object function of an information system homomorphism between information systems is a relation preserving function with respect to equivalence relations determined by the attribute sets. Hence, definable sets of information systems can be also considered using the object functions of information system homomorphisms.

Note that the category \(\text{REL} \) of sets and relations is subject to rough set models on two universes and it is isomorphic to the category \(\text{R-APR} \) of power sets and approximation operators [16,30]. Hence, the categories \(\text{Rel} \) and \(\text{REL} \) have different directions. Some works on categorical results in rough set theory can be found in [2,3,16–19,25,26]. For the basic categorical results and terminology, we refer to [1].

This paper is organized as follows. In Section 1, we recall the motivation, and necessary concepts and results related to textures from [6–9,15]. Section 2 is devoted to direlation preserving difunctions. Here, we show that textural approximation spaces and direlations preserving difunctions form a category denoted by \(\text{diRel} \). Further, we show that \(\text{diRel} \) is a topological category and hence, it has products and sums. In Section 3 we discuss textural definability and bicontinuity. In particular, we prove that under pre-images of relation preserving difunctions, textural definability is preserved. Sections 4 and 5 are devoted to approximation spaces and information systems, respectively. First, we give some basic results related to definability and we discuss the category \(\text{Rel} \) and the category \(\text{IS} \) of information systems and information system homomorphisms.

1. **Textures**

Let \(U \) be a set. Then \(U \subseteq \mathcal{P}(U) \) is called a **texturing** of \(U \), and \((U, U) \) is called a **texture space**, or simply a **texture** [6], if

(i) \((\mathcal{U}, \subseteq) \) is a complete lattice containing \(U \) and \(\emptyset \), which has the property that arbitrary meets coincide with intersections, and finite joins coincide with unions,

(ii) \(\mathcal{U} \) is completely distributive, that is, for all index set \(I \), and for all \(i \in I \), if \(J_i \) is an index set and if \(A^i_j \in \mathcal{U} \), then we have

\[
\bigcap_{i \in I} \left[\bigvee_{j \in J_i} A^i_j \right] = \bigvee_{[i \in I, J_i]} \bigcap_{i \in I} A^i_j.
\]

(iii) \(\mathcal{U} \) separates the points of \(U \), that is, given \(u_1 \neq u_2 \) in \(U \) there exists \(A \in \mathcal{U} \) such that \(u_1 \in A, u_2 \notin A \), or \(u_2 \in A, u_1 \notin A \).

A **complementation** on \((U, \mathcal{U}) \) is a mapping \(c_U : \mathcal{U} \rightarrow \mathcal{U} \) satisfying the conditions

\[
\forall A \in \mathcal{U}, \quad c_U^2(A) = A,
\]

\[
\forall A, B \in \mathcal{U}, \quad A \subseteq B \Rightarrow c_U(B) \subseteq c_U(A).
\]

Then the triple \((U, \mathcal{U}, c_U) \) is said to be a **complemented texture space**.

In a texture \((U, \mathcal{U}) \), \(p \)-sets and \(q \)-sets are defined by

\[
P_u = \bigcap \{ \{ A \in \mathcal{U} \mid u \in A \} \}
\quad \text{and} \quad
Q_u = \bigvee \{ \{ A \in \mathcal{U} \mid u \notin A \} \},
\]

respectively. The condition (ii), that is, the complete distributivity of \((U, \mathcal{U}) \) is equivalent to the following statement [10].

(ii') For \(A, B \in \mathcal{U} \), if \(A \not\subseteq B \) then there exists \(u \in U \) with \(A \not\subseteq Q_u \) and \(P_u \not\subseteq B \).

A nonempty set \(A \in \mathcal{U} \) is a **molecule** if \(\forall B, C \in \mathcal{U}, A \subseteq B \cup C \Rightarrow A \subseteq B \) or \(A \subseteq C \). Clearly, \(p \)-sets are molecules of a texture space. A texture space \((U, \mathcal{U}) \) is called **simple** if all molecules of the space are \(p \)-sets.

A trivial example of a texture is the pair \((U, \mathcal{P}(U)) \) where \(\mathcal{P}(U) \) is the power set of \(U \). It is called a **discrete texture**. Clearly, \((U, \mathcal{P}(U)) \) is simple and for \(u \in U \) we have

\[
P_u = \{ u \} \quad \text{and} \quad Q_u = U \setminus \{ u \}
\]

and \(c_U : \mathcal{P}(U) \rightarrow \mathcal{P}(U) \) is the ordinary complementation on \((U, \mathcal{P}(U)) \) defined by \(c_U(A) = U \setminus A \) for all \(A \in \mathcal{P}(U) \). However, the basic motivation of textures is in fact, the natural correspondence between the fuzzy lattices and simple textures [7].
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات