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a b s t r a c t

In the inertial motion capture system, the model complexity and the large amount of com-
putation make the completion of the orientation estimation algorithm rely solely on PC.
Because the data processing speed is slow, it is difficult to realize high-speed motion track-
ing in the embedded system. In order to further expand the application of the motion
tracking technology, this paper introduces a two-step Kalman filter, which is suitable for
the embedded system. The filter is composed of two sub filters, and is adaptively adjusted
based on the variance matching of fuzzy logic. IMU orientation is calculated based on the
filtered acceleration vector and the estimated yaw. This approach simplifies the mathemat-
ical model, reduces the matrix operations and improves the speed of computation.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

As the performance of MEMS gyros and MEMS acceler-
ometers enhances, the inertial motion capture system has
been widely used, such as in autonomous navigation and
gait recognition [1,2]. The typical inertia operation capture
system consists of 17 to 23 IMU (Inertial/Magnetic Unit),
and each IMU is comprised of 3D gyroscope, 3D accelerom-
eter and 3D magnetometer. In the practical application, the
gyro output is influenced by the zero bias, the quantization
error and random noise; the accelerometer output is the
sum of the gravity acceleration and linear acceleration;
the magnetometer output is the sum of the geomagnetic
and the disturbance magnetic field. These factors reduce
the accuracy and stability of the motion capture system.

In order to improve the accuracy of the orientation esti-
mation, variety of Kalman filters have been proposed,
which mainly are divided into two types. One type is the
Complementary Kalman filter. In the filter proposed by

Roetenberg and Luinge [3], firstly updated the process
equation with the gyro output; and then updated the mea-
surement equation according to the difference between
the estimated and the measured vector of the gravity
acceleration and the geomagnetic; finally calculate orien-
tation errors. In the filter modified by Suh, the gravity
acceleration vector and the geomagnetic vector are respec-
tively processed in two sub filters. Suh proposed an esti-
mation equation of linear acceleration [4]. The linear
accelerations in the three axes are respectively dealt with,
which improves the utilization of the data. Besides, in
2006, according to the Complementary Kalman proposed
by Foxlin, Bachmann used QUEST to replace Gauss–New-
ton iterative algorithm [5,6]. In 2011, Bachmann proposed
the Complementary Kalman based on frequency [7].

The other type is the Direct Kalman filter. In the Direct
filter proposed by Young, firstly update the process equa-
tion with the gyro output, then update the observation
equation with the accelerometer and magnetometer out-
put, and finally the Kalman filter gives the optical orienta-
tion estimation [8]. Bachmann modified the Direct Kalman
Filter based on Gauss–Newton, which took the estimation
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values of the gravity acceleration vector and the geomag-
netic vector as six dimensional error vectors, and then
the error vectors were substituted into Gauss–Newton
iterative algorithm to get the orientation estimation error
of IMU, finally to correct the process vector [9]. In the Di-
rect Kalman filter proposed by Lee, the orientation and
the extra acceleration could be accurately estimated
[10,11]. In addition, in the Direct filter proposed by Angelo
M.Sabatini, bias compensation of the sensors can control
the influence on orientation brought by body motion and
magnetic disturbance [12].

The models of the two filters are mature, but involve a
large number of operations, which makes them achieve
high-speed data processing only on PC. In order to avoid
the dependence on PC, this paper introduces a two-step
Kalman filter [13]. It divides the typical Kalman filter into
two sub Kalman filters, and separately deals with the grav-
ity acceleration vector and the geomagnetic vector. The
new algorithm simplifies the model of the IMU, reduces
the amount of computation, and meets the requirement
of embedded systems. Meanwhile, the inaccuracy of the
noise statistical properties largely affects the estimation
of the Kalman filter, and even leads to filter divergence.
To solve this problem, this paper introduces the adaptive
adjustment method based on fuzzy logic [14,15], which
can further improve the estimation accuracy.

2. The error model of sensor

Assume ya is the accelerometer output; C(q)g is the
gravity acceleration vector in body frame, ab,t is the linear
acceleration; wa,t is the white noise of the linear accelera-
tion; va is the white noise of the accelerometer output,
and the mean value of va is zero. The accelerometer signals
are described in Eq. (1).

ya � ab;t ¼ CðqÞg þ va þwa;t ð1Þ

Assume ym is the magnetometer output; C(q)m is geo-
magnetic field vector in body frame; dt is the disturbance

magnetic; vm is the white noise of the magnetometer out-
put and the mean of vm is zero. The magnetometer signals
are described in Eq. (2).

ym ¼ CðqÞmþ dt þ vm ð2Þ

The magnetic disturbance dt is modeled by the follow-
ing Markov scheme, described in Eq. (3) [3].

dt ¼ cddt�1 þwd;t ð3Þ

Assume yg is the gyro output; x is angular velocity in
body frame; bg,t is the offset; vg is the white noise of the
gyro output and the mean of vg is zero. The gyro signals
are described in Eq. (4).

yg ¼ xþ bg;t þ vg ð4Þ

And the offset bg,t is modeled as a first order Markov pro-
cess, driven by the white noise wg,t, shown in Eq. (5) [3].

bg;t ¼ bg;t�1 þwg;t ð5Þ

3. The two-step Kalman filter

The proposed two-step Kalman filter consists of two
sub filters, as shown in Fig. 1. The first Kalman filter is to
estimate the gravity acceleration vector in the body frame.
The second Kalman filter is to estimate yaw. To the first fil-
ter, update the IMU orientation according to the gyro out-
put; then estimate the gravity acceleration vector as the
process vector of the Kalman filter; the measurement vec-
tor is the corrected output of the accelerometer; at last cal-
culate pitch and roll according to the filtered gravity
acceleration vector. Then pitch and roll are substituted to
the geomagnetic field equation to obtain the computed
yaw. The computed yaw is as the measurement vector of
the second Kalman filter. The process vector of the second
Kalman filter is the updated yaw from the gyro output. The
optimal estimation of yaw can be obtained after the second
Kalman filter acts.

3.1. The IMU orientation updating

Assume the inertial frame of the IMU is pn, and the body
frame is pb. In the Euler angles, the conversion equation be-
tween different frames is shown in Eq. (6):

where / is pitch, w is yaw and h is roll.

Thus, we have

Pb ¼ Cb
npn ð6Þ

pb ¼
cos h cos w cos h sin w � sin h

� cos / sin wþ sin / sin h cos w cos / cos wþ sin / sin h sin w sin / cos h

sin / sin wþ cos / sin h cos w � sin / cos wþ cos / sin h sin w cos / cos h
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Let Cb
n ¼

cos h cos w cos h sin w � sin h

� cos / sin wþ sin / sin h cos w cos / cos wþ sin / sin h sin w sin / cos h

sin / sin wþ cos / sin h cos w � sin / cos wþ cos / sin h sin w cos / cos h
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