A proposal for off-grid photovoltaic systems with non-controllable loads using fuzzy logic

Imene Yahyaoui a,b,⇑, Souhir Sallem b, M.B.A. Kamoun b, Fernando Tadeo a

a Industrial Engineering School, University of Valladolid, Spain
b Unité de Commande de Machines et Réseaux de Puissance CMERP-ENIS, University of Sfax, Tunisia

A R T I C L E I N F O

Article history:
Available online 22 October 2013

Keywords:
Renewable energy
Energy management
Fuzzy logic algorithm
Battery protection

A B S T R A C T

A fuzzy-logic based methodology is proposed and evaluated for energy management in off-grid installations with photovoltaic panels as the source of energy and a limited storage capacity in batteries. The decision on the connection or disconnection of components is based on fuzzy rules on the basis of the Photovoltaic Panel Generation measurement, the measured power required by the load, and the estimation of the stored energy in the batteries (this last is obtained from the estimation of the Depth-of-Discharge). The algorithm aims to ensure the system’s autonomy by controlling the switches linking the system components with respect to a multi-objective management criterion developed from the requirements (supply of the load, protection of the battery, etc.). Detailed tests of the proposed system are carried out using data (irradiation, temperature, power consumption, etc.) measured in a household at the target area at several days of the year. The results demonstrate that the proposed approach achieves the objectives of system autonomy, battery protection and power supply stability. Compared with a basic algorithm, the proposed algorithm is not sensitive to sudden changes in atmospheric parameters and avoids overcharging the battery.

C211 ©2013 Elsevier Ltd. All rights reserved.

1. Introduction

The demand for electrical energy supply systems in isolated areas is increasing around the world, for water pumping [1], desalination [2] and supplying remote dwellings with electricity [3]. This motivates the development of novel energy management methodologies to balance production with demand. Among the renewable energy sources that are being installed, photovoltaic panels (PVPs) is probably the most frequent, since it offers many advantages such as low maintenance costs, no polluting, and no noise.

The main disadvantage is that the electricity is produced only during the day, so if the electrical load cannot be fully controlled to balance with the electricity production, the use of batteries is essential.

These off-grid PVP-based systems, require specific solutions that are being researched, focusing on system modeling [4], PVP sizing [5,6], optimization [7], Maximum Power Point Tracking (MPPT) [8], etc. These issues are mainly deliberated in the literature and efficient standard tools have been advanced [9]. Fuzzy Management Algorithms (FMAs) have previously shown to offer adequate energy management of the photovoltaic systems [10]. Thus, starting from a preliminary study presented in [11], the management algorithm is refined here, with improved models, is generalized for generic non-adaptable loads, and its performance is demonstrated using measured data of a household in the target area.

Thus, this paper presents the development and tests of a management strategy for off-grid PVP-based systems that is advanced (in the sense that it is based on considering several measurements to find on-line a compromise between conflicting objectives), that can be adapted to different configurations and could be implemented using off-the-shelf hardware and software. To do so, Mandani-type fuzzy logic is used within the management algorithm as it is simple to learn for operators with little technical training [12] and can be implemented using standard components, such as Programmable Industrial Controllers [13].

Following previous works [11], the estimated power produced by the photovoltaic panel is used by the algorithm. This estimation is used to decide when to connect the components of the system using a fuzzy-rules algorithm. The decisions taken ensure the autonomy of the system, the correct charge/discharge of the...
battery, a good use of the generated power and a stable supply for
the load.

The following section describes the system components models.
The Fuzzy Management Algorithm is detailed in Section 3, where
the management strategy and the algorithm’s execution are ex-
plained in depth. Some results are presented and discussed in Sec-
tion 4. Finally, Section 5 gives a conclusion.

2. System modeling

The system under study is composed of a set of photovoltaic
panels (with MPPT controllers), connected through relays to a
Lead-acid battery bank (which includes the batteries and their reg-
ulators), and a variable load, using a DC bus, as presented in Fig. 1.

2.1. The PVP generation model

A non-linear model is used to model the photovoltaic panel. It is
based on the daily measured irradiation G and the ambient tem-
perature T_a at the panel surface, which are used as inputs to a PVP
generation model to evaluate the photovoltaic current I_{pv}. Thus, it is
given by these equations [14]:

$$I_{pv} = n_p \left(I_{ph} - I_a \left(\exp \left(\frac{V_c + I_{pv} R_s}{V_t} \right) - 1 \right) \right)$$

(1)

$$I_{ph} = \frac{G}{G_0} I_{sc}$$

(2)

$$I_{sc} = I_{ph,Tref} \left(1 + \left(a(T_a - T_{ref}) \right) \right)$$

(3)

$$I_a = I_{a,Tref} \left(\frac{T_a}{T_{ref}} \right)^{\frac{1}{2}} \left(1 + \left(\frac{T_a}{T_{ref}} \right) \right)$$

(4)

$$I_{a,Tref} = \left(\frac{I_{ph,Tref}}{e^{qT_{ref}/k_T}} - 1 \right)$$

(5)

where I_{pv} is the estimated photovoltaic current (A), I_{ph} is the gen-
erated photo-current at a given irradiance G (A), I_a is the short
circuit current for a given temperature T_a (A), I_r is the reverse sat-
uration current for a given temperature T_a (A), I_{sc} is the short
circuit current for a given temperature T_a (A), and I_{ref} is the re-
servation current for the reference temperature T_{ref} (A).

The efficiency of the photovoltaic generation is ensured via the
use of the MPPT bloc, where we adopted the P&O method for the
extraction of the maximum electric power [8]. Hence, we obtain
P_{pv}, the optimum photovoltaic current.

2.2. The battery model

For the Lead-acid battery, we adopt the nonlinear model given
by [7]. Fig. 2 describes the equivalent circuit used for the lead acid
battery, where I_{bat} is positive when charging and negative when
discharging and V_{bat} is the battery output voltage. The charge of
the battery (at instant k) is given by:

$$C_{r(k)} = C_{r(k-1)} + \frac{\Delta t}{3600} P_{bat(k)}$$

(6)

where Δt is the time between instant $k-1$ and k, and k_p is Peukert
constant.

Thus, the depth of discharge dod is given by the following equa-
tion ($dod = 0$ when the battery is fully charged and $dod = 1$ when
the battery is empty):

$$dod(k) = C_{r(k)} \frac{C_{sh}}{C_{p}}$$

(7)

where C_{r} is the charged capacity and C_{p} is the capacity of Peukert,
considered constant.

2.3. The load

To take into account the use of the expected electricity, we used
a profile based on the consumption patterns of a typical family in
Tunisia. Fig. 3 shows an hourly pattern for a typical day.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات