
Expert Systems With Applications 45 (2016) 185–194

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Co-changing code volume prediction through association rule mining

and linear regression model

Shin-Jie Lee a,b,∗, Li Hsiang Lo b, Yu-Cheng Chen b, Shi-Min Shen b

a Computer and Network Center, National Cheng Kung University, Tainan 701, Taiwan
b Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan

a r t i c l e i n f o

Keywords:

Co-changing code volume prediction

Co-changing methods identification

a b s t r a c t

Code smells are symptoms in the source code that indicate possible deeper problems and may serve as drivers

for code refactoring. Although effort has been made on identifying divergent changes and shotgun surgeries,

little emphasis has been put on predicting the volume of co-changing code that appears in the code smells.

More specifically, when a software developer intends to perform a particular modification task on a method, a

predicted volume of code that will potentially be co-changed with the method could be considered as signif-

icant information for estimating the modification effort. In this paper, we propose an approach to predicting

volume of co-changing code affected by a method to be modified. The approach has the following key fea-

tures: co-changing methods can be identified for detecting divergent changes and shotgun surgeries based

on association rules mined from change histories; and volume of co-changing code affected by a method to

be modified can be predicted through a derived fitted regression line with t-test based on the co-changing

methods identification results. The experimental results show that the success rate of co-changing methods

identification is 82% with a suggested threshold, and the numbers of correct identifications would not be

influenced by the increasing number of commits as a project continuously evolves. Additionally, the mean

absolute error of co-changing code volume predictions is 133 lines of code which is 95.3% less than the one

of a naive approach.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Code smells are certain structures in the code that suggest the

possibility of refactoring and may complicate the maintenance of

software (Eick, Graves, Karr, Marron, & Mockus, 2001; Fowler, 1999;

Khomh, Di Penta, & Guéhéneu, 2009; Olbrich, Cruzes, Basili, & Za-

zworka, 2009; Sjoberg, Yamashita, Anda, Mockus, & Dyba, 2013;

Slinger, 2005; van Emden & Moonen, 2002). In Fowler (1999), 22 code

smells are elaborated and their related refactorings are also investi-

gated. In the past decade, a number of approaches have been pro-

posed to enable automatically identifying code smells. Approaches

on detections of duplicated code are investigated (Bellon, Koschke,

Antoniol, Krinke, & Merlo, 2007; Roy & Cordy, 2007; Tiarks, Koschke,

& Falke, 2009). In Moha, Guéhéneuc, Duchien, and Le Meur (2010),

a smell detection tool is proposed to identify design smells of Blob,

∗ Corresponding author at: Computer and Network Center, National Cheng Kung

University, Tainan 701, Taiwan.

E-mail addresses: jielee@mail.ncku.edu.tw (S.-J. Lee), roraibar@gmail.com (L.H. Lo),

mooc0102@gmail.com (Y.-C. Chen), thanatos1710@gmail.com (S.-M. Shen).

Functional decomposition, Spaghetti code, Swiss army knife and the

code smells related to the design smells. In Tsantalis and Chatzigeor-

giou (2009), a methodology for the identification of Move method

refactoring opportunities is proposed for solving Feature envy bad

smells. In Ligu, Chatzigeorgiou, Chaikalis, and Ygeionomakis (2013),

a technique for the identification of refused bequest code smells is

developed based on the intentional introduction of errors in the in-

herited methods of objects.

Among the code smells, Divergent change and Shotgun surgery

are the ones that are directly related to co-changes of code. As de-

scribed in Fowler (1999), a divergent change occurs when one class

is commonly changed in different ways for different reasons, and a

shotgun surgery occurs when every time a kind of change is made

on a class, a lot of little changes to a lot of different classes have

to be made. Although effort has been made on identifying diver-

gent changes and shotgun surgeries, little emphasis has been put on

predicting the volume of co-changing code that appears in the code

smells. More specifically, when a software developer intends to per-

form a particular modification task on a method, a predicted volume

of code that will potentially be co-changed with the method could be

considered as significant information for estimating the modification

effort. In this work, we propose a system for predicting volume of

http://dx.doi.org/10.1016/j.eswa.2015.09.023

0957-4174/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.eswa.2015.09.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.09.023&domain=pdf
mailto:jielee@mail.ncku.edu.tw
mailto:roraibar@gmail.com
mailto:mooc0102@gmail.com
mailto:thanatos1710@gmail.com
http://dx.doi.org/10.1016/j.eswa.2015.09.023


186 S.-J. Lee et al. / Expert Systems With Applications 45 (2016) 185–194

co-changing code affected by a method to be modified. The system

has the following key features:

• Co-changing methods can be identified based on association rules

mined from change histories.
• Volume of co-changing code affected by a method to be modified

can be predicted through a derived linear regression line with t-

test based on the co-changing methods identification results.

We also conducted experiments to evaluate the success rate of

identifying co-changing methods, numbers of correct predictions of

co-changes as a project evolves, and the mean absolute error of pre-

dicting co-changing code volume.

This paper is organized as follows. The proposed approach is elab-

orated in Section 2. Section 3 describes the experimental evaluations

of the proposed system. Related works are discussed in Section 4. In

Section 5, we conclude the contributions of the proposed approach

and the future work.

2. An approach to predicting co-changing code volume

Fig. 1 shows the system architecture of the proposed approach.

Through the component of Code Parser, the source code of a project

being analyzed will be parsed into abstract syntax trees, and each

commit information will be retrieved from the change history of the

project. The code smells of large classes, long methods, and long pa-

rameter lists will be detected by the component of Large Class/Long

Method/Long Parameter List Detector through comparing the LOC

of classes/methods/numbers of parameters of the project being an-

alyzed against the thresholds determined based on 50 open source

projects (Lee, Lin, Lo, Chen, & Lee, 2014). The code smells of divergent

changes and shotgun surgeries will be detected by the component

of Divergent Change/Shotgun Surgery Detector based on association

rule mining (Agrawal, Imieliński, & Swami, 1993).

Subsequently, the component of Class Relationships with Code

Smells Network Generator generates a set of networks representing

the class relationships, and adds the code smells information to the

networks, which was also developed based on our previous work.

The networks will be visualized through an open source network vi-

sualization tool, Cytoscape (Cytoscape official website). Additionally,

Divergent Change/Shotgun Surgery Detector component also derives

fitted regression lines for predicting co-changing code volume based

on the lines of changed code in methods. When a user inputs the

number of lines of code of a method to be modified, the Co-Changing

Code Volume Prediction component will predict the volume of co-

changing code through a derived fitted regression line.

Fig. 2 shows a snapshot of the visualization of detected code

smells in Eclipse Equinox project. The networks of the relationships

between all classes in the project can be visualized by clicking the

tag “all” in the control panel, and the networks of the relationships

between a class, its methods and its attributes can be visualized by

clicking the tag of the class name. The networks will be visualized on

the panel in right hand side. In the system, four basic types of the re-

lationships between two classes, i.e., extension, implementation, de-

pendency and association, are identified through parsing the source

code and are visualized according to the notations of UML class dia-

grams. Identified code smells are then highlighted on the networks

in red or yellow. In Fig. 2, the red and yellow rectangles denote large

classes, and the red lines denote the co-changing relations between

classes. The following sections will detail how to identify co-changing

methods and visualize divergent changes and shotgun surgeries.

2.1. Co-changing methods identification

In this section, we introduce how to identify co-changing meth-

ods based on association rule mining and how to detect diver-

gent changes and shotgun surgeries based on identifications of co-

changing methods. Co-change of two methods is identified by the

following definition:

Definition 1. (Unidirectional co-change of two methods): Let

α and β be two methods in a class. Let Cα be the commits in which

α is changed, and let Cβ be the commits in which β is changed. β is

said to co-change with α if the following association rule is mined:

{α} ⇒ {β},
where |Cα ∪Cβ | ≥ θ , the support of the rule is support

({α} ⇒ {β}) = |Cα ∩Cβ |
|Cα ∪Cβ |

≥ γ , and the confidence of the rule is

confidence ({α} ⇒ {β}) = |Cα ∩Cβ |
|Cα | ≥ δ.

In this work, we developed a code parser to extract changed lines

of code of each method in each commit from the Git repositories

of Eclipse projects based on Eclipse AST parser and JGit. The change

types include the changes of the signature and the body of a method.

Table 1 shows an example of the change histories of two methods

getServiceReferences and getServices in the Equinox project. c1, . . . , c10

denote all of the commits in which at least one of the two methods

Web Server

Co-Changing Code Volume 

Prediction

Predicted co-changing 

code volume

LOC to be 

changed

Class relationships with 

code smells networks

Class Relationships with Code 

Smells Networks Generator 

Cytoscape

Shotgun Surgery/Divergent Change 

Detector

Large Class/Long Method/

Long Parameter List/

Data Clump Detector

Fitted regression 

lines

Code Smells 

Visualization 

Project source code & commits

LOC to be 

changed
Predicted co-changing 

code volume

Code Parser

Project Being Analyzed

50 Open Source Projects as 

Training Data Set

Open source code for 

determining thresholds

Lines of 

changed code 

in methods in 

each commit

Shotgun surgery/divergent 

change smells

Large class/long 

method/long 

parameter 

list/data clump 

smells

LOC of classes/methods/ 

numbers of parameters

Fig. 1. System architecture of the proposed approach.



http://isiarticles.com/article/46621

