Long-run purchasing power parity with asymmetric adjustment: Further evidence from nine transition countries

Tsangyao Chang a,b, Han-Wen Tzeng b

a Department of Finance, Feng Chia University, Taichung, Taiwan
b Department of Banking and Risk Management, Overseas Chinese University, Taichung, Taiwan

ABSTRACT

In this study, we applied a threshold cointegration test to investigate the properties of asymmetric adjustment on long-run purchasing power parity (PPP) in nine transition countries between January 1995 and December 2008. Although there was strong evidence of long-run PPP for these nine transition countries (i.e., Bulgaria, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, and Russia), the adjustment mechanism was asymmetric. These results have important policy implications for the nine transition countries included in the study.

1. Introduction

During the past several decades, considerable effort has been put into testing the validity of long-run purchasing power parity (hereafter, PPP) hypothesis because it has important policy implications in international finance. Long-run PPP is indicative of a long-run relationship between the nominal exchange rate and the domestic and foreign prices of a particular economy. When PPP exists, it can be used to determine the equilibrium exchange rate. When the PPP hypothesis does not hold, however, the use of any monetary approach to determine the exchange rate is invalidated because a monetary approach necessitates that the PPP hypothesis holds true. According to Holmes (2001) and Sarno (2005), PPP is important to policymakers for several reasons. First, it can be used to predict the exchange rate and determine whether a currency is over- or undervalued, which is particularly important for less developed countries and countries experiencing large differences between domestic and foreign inflation rates. Secondly, the notion of PPP is used as the foundation on which many theories of exchange rate determination are built. Consequently, the validity is important to policymakers in developing countries who base their adjustments on PPP. Thirdly, from a theoretical perspective, if PPP is not a valid long-run international parity condition, this casts doubts on the predictions of open-economy macroeconomics, which are based on the assumption of long-run PPP. Indeed, the implications of open-economy dynamic models are sensitive to the presence or absence of a unit root in the real exchange rate. Finally, estimates of PPP exchange rates are often used for practical purposes, such as determining the degree of misalignment of the nominal exchange rate and the appropriate policy response, the setting of exchange rate parities, and the international comparison of national income levels. The practical uses of the PPP concept and, in particular, the calculation of PPP exchange rates would obviously be of very limited use if PPP deviations contained a unit root.

Although some empirical evidence of long-run PPP for both developed countries and less-developed countries seems convincing, nothing has currently been proved to be conclusive. As for methodology, recent studies of long-run PPP have primarily utilized conventional unit root tests for real exchange rates and cointegration tests for the relationships between various measures of domestic and foreign prices as well as nominal exchange rates. The conclusions drawn from these studies of long-run PPP have primarily been based on linear tests of stationarity and/or cointegration. Because ample evidence in support of asymmetric reactions in key economic variables has been widely acknowledged in recent years, there is no reason to assume that the long-run PPP adjustment process toward equilibrium is always symmetric. Indeed, Madsen and Yang (1998) and Ramsey and Rothman (1996) have shown that economic
variables, such as inflation rates, follow an asymmetric adjustment process. In addition, Balke and Fomby (1997) suggested that the power of linear cointegration tests was lower in an asymmetric adjustment process (i.e., the assumption of symmetric adjustment is likely to yield poor results when it comes to equilibrium relationships because conventional cointegration tests do not take asymmetric adjustments into account). Furthermore, Enders and Granger (1998) showed that the standard tests for unit root and cointegration all have lower power in the presence of misspecified dynamics. This is important because the linear relationship is inappropriate if prices are sticky in the downward, but not in the upward, direction. Madsen and Yang (1998) have provided evidence that prices are sticky in the downward direction, which means that real exchange rate adjustments are asymmetric. Other reasons for the asymmetric adjustment are the presence of transaction costs, which inhibit international goods arbitrage, and official intervention in the foreign exchange market, which may make the nominal exchange rate movements asymmetric (Obstfeld and Taylor, 1997; Sarno et al., 2004; Taylor, 2004; Taylor and Peel, 2000; Taylor and Sarno, 2001; Juvenal and Taylor, 2008). Kilian and Taylor (2003) suggested that nonlinearity may arise from the heterogeneity of opinion in the foreign exchange market concerning the equilibrium level of the nominal exchange rate (i.e., as the nominal rate takes on more extreme values, a great degree of consensus develops concerning the appropriate direction of exchange rate movements, and traders act accordingly). All of these reports motivated us to use threshold (asymmetric) cointegration tests in our study. A number of studies have provided solid empirical evidence for the non-linear and/or asymmetric adjustment of the exchange rate in developed countries (Baum et al., 2001; Taylor et al., 2001; Enders and Dibougolu, 2001), the G-7 countries (Kilian and Taylor, 2003), the 17 OECD countries (Serletis and Gogas, 2000), the Middle East (Sarno, 2000), Asian economies (Enders and Chumrupsomboon, 2004), African countries (Chang et al., 2011), and oil-exporting countries (Chang and Liu, 2010).

We hope that our empirical study can significantly contribute to this field of research by using the threshold cointegration test of Enders and Siklos (2001) to determine whether long-run PPP exists in nine transition countries (i.e., Bulgaria, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, and Russia). All of these countries are European Union (EU) members except Russia. As Alba and Park (2005) and Bahmani-Oskooee et al. (2008) point out, it is important to test the validity of PPP for these countries for several reasons. First, measurements and comparisons of income across countries are usually based on PPP. If PPP does not hold, comparing income convergence among these countries and other EU countries may be misleading. Secondly, these countries are in the process of entering the euro zone; thus, they need an estimate of equilibrium exchange rates before permanently linking to the euro. If PPP holds for these countries, then PPP rates may be used as an equilibrium exchange rate measure to estimate the appropriate exchange rates between the national currencies and the euro. Finally, the failure of PPP to hold may indicate exchange rate misalignments. Overvaluation of national currency relative to main trading partners will actually widen current account deficits and adversely affect the country’s macroeconomic stability, which is a key precondition for entering the euro zone. Although empirical studies of similar design (using threshold cointegration tests) have previously been conducted for both Asian and African countries, these types of studies have not been performed for transition countries. Thus, the present study filled a gap in the literature. The present study found that long-run PPP held true in the nine transition countries examined, but the adjustment mechanism was asymmetric. Our empirical results have important policy implications for the nine transition countries considered.

The present empirical study was organized into several sections. Section 2 briefly reviews the previous literature on PPP in transition countries, and Section 3 presents the data that we used in the study. Section 4 briefly describes the threshold cointegration test of Enders and Siklos (2001), and Section 5 shows our empirical results. Section 6 presents some of the economic and policy implications from our findings, and Section 7 concludes the paper.

2 According to Taylor and Sarno (2001), an intuitively appealing emerging theoretical literature on the nature of international goods arbitrage suggests that real exchange rate adjustment may arise in an inherently nonlinear fashion. At the simplest level, one can imagine arbitrage in a single, homogeneous traded good only becoming strong once arbitrage yielded sufficient profit to outweigh transport and other costs of arbitrage, such that deviations from the law of one price (LOOP) might be expected to switch abruptly from non-mean-reverting (when the deviation from the LOOP is smaller than the arbitrage costs) to mean-reverting (once the deviation is greater than the arbitrage costs). This would suggest that one might find evidence of threshold nonlinearity (i.e., a discrete switch from non-mean reversion to mean reversion at a certain distance from the equilibrium level) — when examining deviations from the LOOP using disaggregated data (Obstfeld and Taylor, 1997). The threshold auto-regressive (TAR) model assumes that whenever the threshold is hit, instantaneous adjustment towards purchasing power parity occurs. Please see Balke and Fomby (1997) and, for an application, Obstfeld and Taylor (1997).

2 According to Taylor and Sarno (2001), an intuitively appealing emerging theoretical literature on the nature of international goods arbitrage suggests that real exchange rate adjustment may arise in an inherently nonlinear fashion. At the simplest level, one can imagine arbitrage in a single, homogeneous traded good only becoming strong once arbitrage yielded sufficient profit to outweigh transport and other costs of arbitrage, such that deviations from the law of one price (LOOP) might be expected to switch abruptly from non-mean-reverting (when the deviation from the LOOP is smaller than the arbitrage costs) to mean-reverting (once the deviation is greater than the arbitrage costs). This would suggest that one might find evidence of threshold nonlinearity (i.e., a discrete switch from non-mean reversion to mean reversion at a certain distance from the equilibrium level) — when examining deviations from the LOOP using disaggregated data (Obstfeld and Taylor, 1997). The threshold auto-regressive (TAR) model assumes that whenever the threshold is hit, instantaneous adjustment towards purchasing power parity occurs. Please see Balke and Fomby (1997) and, for an application, Obstfeld and Taylor (1997).
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات