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A buyer procures a network to span a given set of nodes; each seller bids to supply
certain edges, then the buyer purchases a minimal cost spanning tree. An efficient tree
is constructed in any equilibrium of the Bertrand game.
We evaluate the price of imperfect competition (PIC), namely the ratio of the total price that
could be charged to the buyer in some equilibrium, to the true minimal cost. If each seller
can only bid for a single edge and costs satisfy the triangle inequality, we show that the
PIC is at most 2 for an odd number of nodes, and at most 2 n−1

n−2 for an even number n
of nodes. Surprisingly, this worst case ratio does not improve when the cost pattern is
ultrametric (a much more demanding substitutability requirement), although the overhead
is much lower on average under typical probabilistic assumptions. But the PIC increases
swiftly when sellers can only provide a subset of all edges.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Bertrand competition for differentiated commodities typically implies some welfare losses, as in the Hotelling model.
We consider a special case where it does not, and where the surplus that the competing firms are able to extract admits a
simple upper bound.

A buyer procures a network spanning a given set of nodes, while the sellers bid for different edges of the network.
Efficiency requires to build a minimal cost spanning tree. This familiar optimization problem has a variety of applications
(including rail infrastructure, the Internet’s backbone, water distribution, etc.; see Sharkey, 1995, for a survey).

If one seller is the sole bidder for a certain edge, or a group of edges, he can typically bid higher than their true cost.
But this overhead is bounded above because the edges are partial substitutes: for any edge e, there are several alterna-
tive paths ensuring the connection of e’s two end nodes. We wish to evaluate the welfare consequences of this imperfect
competition between the sellers.

We observe first that irrespective of the ownership structure and of the cost pattern, in equilibrium an efficient (minimal
cost) spanning tree is constructed (Proposition 1). This is very close to being a special case of the efficiency result in the
matroid markets of Chen and Karlin (2007) – on which more below.
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Our main concern is to evaluate the surcharge to the buyer procuring the network. We provide tight bounds when the
cost of the edges satisfy the triangle inequality, i.e., for any three edges e, f , g forming a triangle the cost of one edge is not
larger than the sum of the costs of the other two. We speak then of metric costs. This familiar assumption is realistic when
costs are a subadditive function of the Euclidean length of an edge, or some other measure of spatial distance between its
end nodes (for instance the shortest length of a path connecting the nodes in an arbitrary network).1 It is also automatic
when all sellers have access to the same technology to build edges, but each one is only licensed to bid for certain edges:
it is then feasible to connect the end nodes of e by building f and g .

Our first main result (Theorem 1) is that if each seller bids for a single edge, there is at least one bidder for each edge,
and true costs are metric, the buyer’s surcharge essentially cannot exceed 100% of the true minimal cost. However our
second main result (Theorem 2) says that the overhead grows rapidly if some edges are not available (no one is bidding for
those edges): if at least half of the edges are missing, the worst case ratio of the overhead to the true cost is n − 1, where
n is the number of nodes to connect.

It is instructive to compare our results to those of the literature evaluating the frugality of some related auction mech-
anisms (Archer and Tardos, 2001, 2002; Karlin et al., 2005; Talwar, 2003). The procurement of a spanning tree among
sellers who each own an edge of the network is a special case of the procurement of a matroid basis; other examples
include the procurement of a path between two given nodes of the network (Archer and Tardos, 2002; Elkind et al., 2004;
Immorlica et al., 2005), and more generally the procurement of a team to perform a complex task (Karlin et al., 2005). Like
us, these papers are poised to evaluate the worst possible surcharge to the buyer. However, the payments to the various
sellers are more complicated than in the simple first-price auction of Bertrand competition: they are given by the canonical
VCG mechanism (known as the pivotal mechanism since Green and Laffont, 1979), in which each winning edge is paid its
true cost, plus the extra cost incurred if we cannot use that very edge in our spanning tree. Under this payment scheme
bidding one’s true cost is a dominant strategy for each seller. Thus, implementation of the mechanism is prior-free, in sharp
contrast with our equilibrium analysis of the Bertrand game requiring complete information among sellers.2

When we assume, as we do in our main results, that a seller bids for a single edge, it turns out that the two games,
Bertrand bidding and pivotal, are essentially equivalent: the buyer’s surcharge in the pivotal game is precisely the same as
in the most expensive equilibrium (equivalently, in its unique equilibrium in undominated strategies) of the Bertrand game
(see Section 6.1). Thus, our results can be used indifferently in both contexts.

There have been at least three attempts in the literature to measure the frugality of a mechanism to procure a spanning
tree. They differ in the choice for the benchmark cost to which the total payment of the seller is compared. In Archer and
Tardos (2001, 2002), like here, the benchmark is the true minimal (efficient) cost. They show that the worst case ratio (total
charge to efficient cost) is again n − 1, where n is the number of nodes to connect.3 Our Theorem 1 qualifies this negative
result when costs are metric.

Subsequently, Talwar (2003) uses for benchmark the cheapest cost of a spanning tree with no edge in common with
the efficient tree. This curious proposal may lead in our model to a frugality ratio smaller than one4! Finally in Karlin et
al. (2005) the benchmark is the solution of a linear program that, in the spanning tree problem, coincides with the most
expensive equilibrium (for the buyer), so that the frugality ratio is one, tautologically.

We submit that from the buyer’s perspective, the only meaningful benchmark is the true efficient cost. To avoid con-
fusion with the multiple frugality indices, and to convey the basic economic intuition, we propose to call price of imperfect
competition (PIC) the ratio of the worst buyer’s charge in some equilibrium (or the actual charge in the pivotal mechanism),
to the efficient cost.5

Summary of results. Section 2 introduces the minimum cost spanning tree problem and the Bertrand game of procurement.
Proposition 1 states that an efficient tree is built in all relevant equilibria. Starting with Section 3 we assume that each
seller bids for only one edge. We provide a general formula for the PIC that uses only the network structure and arbitrary
costs (Proposition 2 and Corollary 1).

We assume in Section 4 that costs are metric, and show (Theorem 1) that if all edges have at least one bidder the worst
case PIC is 2 for an odd number of nodes, and 2 n−1

n−2 for an even number n. However a single missing edge raises the
worst case PIC to 3 (Proposition 5), and more generally the PIC may reach n − 1 as soon as half of the edges are missing
(Theorem 2).

In Section 5 we assume that costs are ultrametric, i.e., if edges e, f , g form a triangle, ce � max{c f , cg}. This is stronger,
and implies much closer substitutability than the triangle inequality. Ultrametric costs are a natural restriction in some
environments. Consider a set of nodes for which the connection cost is determined by the compatibility of certain attributes

1 The cost of e takes the form f (‖e‖), where f has increasing returns and f (0) = 0.
2 As well as the technical twist of the limit equilibrium, see Section 2.3.
3 Assume costs are infinite outside a single cycle connecting all n nodes, and on the cycle all costs are zero except for a single edge with cost 1. Then

the ratio is n − 1.
4 Assume 4 nodes a, b, d, e with metric costs cab = cbd = cde = 1, cad = cbe = 2, cae = 3. Efficient cost is 3, the total pivotal charge is 6, and the cost of

the only edge disjoint tree is 7.
5 This terminology is obviously inspired by the notions price of anarchy and price of stability (Koutsoupias and Papadimitriou, 1999; Nisan et al., 2007). But

the PIC measures the impact of decentralizing the procurement process on the buyer’s welfare only. In our simple model imperfect competition induces no
aggregate welfare loss.
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