Dynamics of a Delayed Duopoly Game with Increasing Marginal Costs and Bounded Rationality Strategy

LU Yali a*

School of Management and Economy, North China University of Water Resources and Electric Power, Zhengzhou 450011, China

Abstract

This paper constructs a duopoly game model and investigates its stability with bounded rationality strategy and state delay. Numerical experiments are also carried out to exhibit its dynamical features such as bifurcation diagram, maximal Lyapunov exponent curve, strange attractor and so on. The results show that state delay can enlarge the local stability region of Nash equilibrium point and delay the outputs bifurcation. The faster adjustment speed will induce more complex dynamical response of outputs such as cycles and chaos.

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [CEIS 2011]

Open access under CC BY-NC-ND license.

Keywords: Duopoly game; Delay; Bounded rationality; Increasing marginal costs; Numerical simulation

1. Introduction

In recent years, the problem of oligopoly game has been extensively investigated [1-11]. These literatures show that even for the simplest case of duopoly game, the dynamics are extremely complex because one player’s profit depends not only on its own quantity decision but also on its rival’s reaction. The existing literatures on duopoly game were usually carried out by classical Cournot assumption and three decision-making methods or their combinations: naive method [1-3], adaptive method [4-5] and bounded rationality method [6-11]. In fact, expectation factors play an important role in the progress of duopoly game. Different expectation methods will have great effect on the dynamics of duopoly game.

* Corresponding author. Tel.: +86 371 6931 0136.
E-mail address: luyali676@163.com.
For instance, Kamalinejad et al. [12] investigated the duopoly game with linear regression expectation. Elsadnay [11] studied the dynamics of a duopoly game with constant marginal cost by introducing the state-delay to estimate the rival’s following quantity. However, the marginal cost will never remain static along with the quantity increasing. Also, the information in the market is usually incomplete. Therefore in this paper, we study the dynamics of a duopoly game by using bounded rationality strategy, introducing state delay to estimate the rival’s expectation quantity, and considering the increasing marginal costs.

2. Delayed duopoly game model

Consider two Firms in the market producing same or homogeneous goods. The inverse demand function is assumed linear and decreasing: \(P = a - bQ \), where \(Q = q_1 + q_2 \) is the total output and \(a, b > 0 \). The marginal cost of two Firms is assumed as increasing, i.e., the cost function is of the following form: \(C_i(q_i) = c_i + d_i q_i + e_i q_i^2, i = 1, 2 \), where \(c_i, d_i, e_i > 0 \). In many existing literatures [6-10], depending on the marginal profit in time period \(t \), the player with bounded rationality adjusts its output in time period \(t+1 \) to maximize its profit. In fact, the maximal profit of Firm \(i \) in time period \(t+1 \) is relevant to the quantity decision of Firm \(j \) in time period \(t+1 \), so we introduce the production expectation \(q_j^e(t+1) \) into the usual bounded rationality model as below [11]:

\[
\begin{align*}
q_i(t+1) &= q_i(t) + v_i \cdot q_i(t) \cdot \frac{\partial \pi_i(q_i(t), q_j^e(t+1))}{\partial q_i(t)} \\
q_j(t+1) &= q_j(t) + v_j \cdot q_j(t) \cdot \frac{\partial \pi_j(q_j(t), q_i^e(t+1))}{\partial q_j(t)},
\end{align*}
\]

(1)

where \(v_i \) and \(v_j \) are positive and represent the relative speed of adjustment. \(q_j^e(t+1), j=1,2 \), denotes the expectation of Firm \(i \) about the production decision of Firm \(j \). Different from the usual Cournot assumption, the expectation of Firm \(i \) about the production decision of Firm \(j \) in this paper is expressed by employing state delay, i.e.,

\[
q_j^e(t+1) = w_j \cdot q_j(t_) + (1-w_j) \cdot q_j(t-1), \quad j=1,2,
\]

(2)

where \(w_j \) is the weight and satisfies \(0 < w_j < 1 \). By using (1) and (2), the duopoly game with state delay and bounded rationality can be modeled as following:

\[
\begin{align*}
q_i(t+1) &= q_i(t) + v_i \cdot q_i(t) \cdot [a - d_i - 2(b + e_i) \cdot q_i(t) - b[w_i \cdot q_j(t) + (1-w_i) \cdot q_j(t-1)]] \\
q_j(t+1) &= q_j(t) + v_j \cdot q_j(t) \cdot [a - d_j - 2(b + e_j) \cdot q_j(t) - b[w_i \cdot q_i(t) + (1-w_i) \cdot q_i(t-1)]].
\end{align*}
\]

(3)

Equations (3) has only one Nash equilibrium point \(E^* = (q_i^*, q_j^*) \), where

\[
q_i^* = \frac{2e_i(a-d_i)+b(a+d_i-2d_i)}{3b^2+4be_i+4be_2+4e_ie_2},
\]

\[
q_j^* = \frac{2e_i(a-d_j)+b(a+d_j-2d_j)}{3b^2+4be_i+4be_2+4e_ie_2}.
\]

Based on the economic meaning, the parameters must satisfy the following conditions:

\[
a > d_i, a > d_j, a + d_i - 2d_i > 0, a + d_j - 2d_j > 0.
\]

(4)

Proposition 1. The Nash equilibrium point \(E^* \) is locally stable.

Equations (3) include state delay which makes it difficult to analyze the stability of (3). In order to study the stability of Nash equilibrium point \(E^* \), we rewrite (3) as a four-dimensional system in the form:
دریافت فوری
متن کاملاً مقاله

<table>
<thead>
<tr>
<th>ISI Articles</th>
<th>مرجع مقالات تخصصی ایران</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ امکان دانلود نسخه تمام متن مقالات انگلیسی</td>
<td>✓ امکان دانلود نسخه ترجمه شده مقالات</td>
</tr>
<tr>
<td>✓ پذیرش سفارش ترجمه تخصصی</td>
<td>✓ امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله</td>
</tr>
<tr>
<td>✓ امکان دانلود رایگان ۲ صفحه اول هر مقاله</td>
<td>✓ امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب</td>
</tr>
<tr>
<td>✓ دانلود فوری مقاله پس از پرداخت آنلاین</td>
<td>✓ پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات</td>
</tr>
</tbody>
</table>