Dynamic simulation of energy management control functions for HVAC systems in buildings

Wen Zhen Huang a, M. Zaheeruddin a,*, S.H. Cho b

a Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
b Mechanical & Automotive Engineering Department, Jeonju University, 1200 Hyojadong, Wansangu, Jeonju, Jellabukdo 520-759, South Korea

Received 2 December 2004; accepted 10 June 2005
Available online 8 August 2005

Abstract

Five energy management control (EMC) functions such as outside air (OA) economizer cycle, programmed start and stop lead time, load reset and occupied time adaptive control strategy are developed and evaluated using a variable air volume heating, ventilating and air conditioning, VAV-HVAC, system level dynamic model as a simulation platform. A real time system embedded with the above EMC functions is presented. The simulation results manifest that energy savings of 17% can be achieved when the system is operated with the EMC functions and optimal set points compared with the system without such functions. These results do point out that the optimal set point strategy is very useful in achieving energy efficient operation of HVAC systems.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Energy management control systems; HVAC systems; Adaptive control; Optimization; Building operation; Energy savings

* Corresponding author. Tel.: +1 514 848 2424x3194; fax: +1 514 846 7965.
E-mail address: zaheer@bcee.concordia.ca (M. Zaheeruddin).

0196-8904/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
1. Introduction

It is estimated that heating ventilating and air conditioning (HVAC) systems consume about 50% of the total energy used in buildings [1]. By properly operating the HVAC systems, considerable energy savings can be realized. In this regard, energy management control (EMC) systems can help improve the energy efficiency of the HVAC systems in buildings and maintain a good thermal environment. Common EMC strategies used to reduce energy consumption in buildings are programmed start/stop; optimal start/stop; duty cycling; load reset; electric demand limiting; adaptive control; chiller optimization; boiler optimization; optimal energy sourcing etc. [1].

Most published papers have focused on implementing one EMC function at a time with or without optimal control algorithms [2–5]. Liu et al. [6] and Yang et al. [7] presented the start/stop
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات