Introduction

In today's modern and competitive industrial society, production costs and lead time are of crucial significance for companies, especially in the mass production and mass customization domain. Unpredictable machine life and premature machine failures are major problems that must be dealt with in everyday industrial practice. Nevertheless, machine utilization must be kept in optimal levels in order to maintain productivity and achieve capital depreciation. Machine estimated useful life, utilization, cost and residual value are some of the main factors to be considered in calculating depreciation [1]. Prognostics on machine or process breakdowns and products' life expectancy estimation aim towards optimal machine utilization. Moreover, continuous monitoring, assessment and prediction of a product's performance could also enable a holistic product life-cycle management in which products are monitored, assessed and improved throughout their life-cycle. Finally, another key factor affecting mass customization is flexibility [2]. The flexibility of a manufacturing system is determined by its sensitivity to change. Changes including the rapid introduction of new products, abrupt changes in product demand and mix, and more frequent modifications to existing products create problems capable to be alleviated by a high volume, operational and / or product flexibility [3]. Increased flexibility consequently provides a manufacturing system with a series of principal advantages. To tackle these issues, the presented research work aims at providing a monitoring framework for machine status identification and prediction, so that activities like process planning and scheduling become aware and adaptive. In of a CNC milling machine and...
software implementation for results visualization in a friendly user interface on a Cloud service.

2. State of the art

In the field of machine availability monitoring, the authors in [4] proposed two methods for predicting machinery damage, namely the recurrent neural networks (RNNs) and the neuro-fuzzy (NF) systems for time-series analysis. Through comparison by testing them in three test cases of a worn, a chipped and a cracked gear, RNNs performed better in forecasting accuracy. Approaching the process monitoring, the authors in [5] proposed to synthesize the state variable estimates determined by different sensors and corresponding process models, through a well-trained neural network. In a recent review study the support machine vector (SVM) is presented as a promising method having an excellent performance and high accuracy in machine condition monitoring and diagnosis [6]. A new version of support machine vector named fuzzy support vector is presented by [7]. The method combines the triangular fuzzy theory with modified support machine vector. A hybrid method is presented in [8] which includes sweeping filters and tooth rotation energy estimation (TREE). A real time analysis of frequency components of the spindle signal of a milling machine provided a robust and reliable monitoring system able to identify tool breakage. A new machine condition monitoring method based on a stochastic Hidden Markov model (HMM) is presented in [9][9]. Using the HMM, not only was the precise detection of defect achieved, but also the correct identification of defect type was possible. Moreover, the use of regression trees technology and time series in order to predict the future condition of the machine is proposed by [10]. The main idea is that the embedding dimension is estimated at first in order to predict the next value, determining accordingly the available observations. In [11], an aircraft air conditioning is used as a case study in order to forecast future data points and to prevent unscheduled maintenance. The proposed method includes decision trees to find patterns from past data and a genetic algorithm to find small randomness and the managed search in order to find better solutions in shorter time.

The work reported in this paper focuses on the development of a framework machine monitoring that retrieves real time information and constitutes scheduling and other production support systems adaptive to change. A CNC milling machine incapable to expose monitoring information directly was chosen specifically for that purpose, to demonstrate the ability of the method to accommodate outdated equipment and closed-architecture systems. Time series analysis of the gathered information is carried out through models utilized by a prediction engine. An adaptive scheduling engine, including maintenance planning is described and finally a software tool offered as a cloud service with user friendly interfaces is implemented for data entry and visualization of the results.

3. Architecture of monitoring system

This paper proposes a method in which main scheduling decisions could be determined based on exploiting information from the machine in near-real time machine condition monitoring. Real-time monitoring provides the manufacturing system with the capability to prevent errors and to propose alternative methods of scheduling. To accomplish these, this framework is based on five main steps (Figure 1):

- Machine Monitoring and Data Acquisition
- Data Preparation & Diagnostics Engine
- Prediction Engine
- Visualization of Results and Actions
- Maintenance planning & Adaptive scheduling of the system
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات