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Shadow prices, also termed marginal abatement costs, provide valuable guidelines to support environmental
regulatory policies for CO2, SO2 and NOx, the key contributors to climate change. This paper complements the
existing models and describes a directional marginal productivity (DMP) approach to estimate directional
shadow prices (DSPs) which present substitutability among three emissions and are jointly estimated. We
apply the method to a case study of CO2, SO2 and NOx produced by coal power plants operating between 1990
and 2010 in the United States. We find that DSP shows 1.1 times the maximal shadow prices estimated in the
current literature. We conclude that estimating the shadow prices of each by-product separately may lead to
an overestimation of the marginal productivity and an underestimation of the shadow prices.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The challenges posed by climate change require large reductions of
global carbon dioxide (CO2) emissions, of which electricity and heat gener-
ation account for over 40%. Currently, a majority of electricity is still gener-
ated through burning coal, with the share increasing from 65% in 1990 to
72% in 2012 in the world (IEA, 2014). In addition to CO2 emissions, coal-
fired electricity generation also produces undesirable air pollutants such
as sulfur oxide (SO2) and nitrogen oxide (NOx). In the United States (US),
power plants generated around 77% of acid gases (e.g., hydrogen sulfide
and CO2), 60% of SO2 and 13% of NOx in 2010 (EPA, 2012a). Coal-fired elec-
tricity generation accounted for 44.8% of total electricity generation, which
contributed to 78.4% of CO2, 91.9% of SO2, and 74.0% of NOx among all
power sectors (EIA, 2011). The federal Environmental Protection Agency
(EPA) regulates pollution under the federal Clean Air Act (CAA) Amend-
ments. In 2011, EPA released new environmental regulations which
asked coal power plants to reduce emissions of 84 toxic chemical levels

within four years (EPA, 2011). Around 1400 coal and oil-fired electric gen-
erating units (EGUs) at 600 power plants in US were covered under the
new standards.

Recently, three major regulatory provisions — Mercury Air Toxics
Standards (MATS), Cross-state Air Pollution Rules (CSAPR), and Clean
Power Plan (CPP), were implemented to US coal-fired power plants. In
2011, EPA finalizedMATS and CSAPR environmental regulations aiming
at curbing air pollution from the electricity sector. MATS targeted for
reducing the emissions of hazardous air pollutants, such as mercury
and acid gases, from coal- and oil-fired power plants. The aim of
CSAPR was to reduce SO2, NOx and ozone emissions that are crossing
state lines from power units in the Eastern Interconnection primarily.
In 2014, CPP was proposed to limit on CO2 produced by both new and
existing power plants. The overall goal is to achieve a 30% cut from the
2005 emissions by 2030, with an interim target of 25% on average
between 2020 and 2029. More recently, EPA's proposal, “New Source
Performance Standards”, mandates a maximum of 1000 lb of CO2 per
MWh of electricity produced by new plants.

Emission trading is a widely accepted economic solution to environ-
mental externalities, e.g., the by-products of coal power plants. The
mechanism of emission trading is based on Coase's assertion (Coase,
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1960) that if trading in an externality and absent a transaction cost,
bargaining will lead to an efficient outcome regardless of the initial
allocation of property rights trading. Following his work, Dales (1968)
proposed the conceptual model of an emission trading market with
respect to a specific pollutant. Given the marginal abatement cost
(MAC) curve and the marginal damages curve, the market would
achieve equilibrium in the presence of externalities. Emission trading
builds up the market incentive and achieves cost effectiveness, i.e., the
benefits obtained from trading between parties will be larger than the
benefit generated by individual emission reduction (Montgomery,
1972; Tietenberg, 1985). A few recent studies, however, claim that
only considering the MAC of emission reduction may underestimate
the damages to the national economy. Instead, they suggest considering
the change of gross domestic product (GDP) when reducing the pollu-
tion via MAC (Klepper and Peterson, 2006; Kuik et al., 2009;
Stankevicitue et al., 2008).

Estimating the MAC of pollutants provides valuable information to
policy makers for devising and improving the operating rules of
emission trading (Zhou et al., 2015). While there are different methods
for estimatingMAC, the shadow price of CO2may be used as a reference
value to the allowance price in the emission trading market (Lee et al.,
2002). The shadow price of undesirable output is derived from the
market price of desirable output by using distance function and duality
theory, and the distance function could be estimated by parametric or
nonparametric approaches (Zhou et al., 2014).

In application, the parametric method is more commonly used
because the specified production function is differentiable everywhere.
Färe et al. (1993) first employed an output distance function with the
translog functional form to estimate the shadow prices of four pollutants
generated by pulp and paper mills in Michigan and Wisconsin in 1976.
Coggins and Swinton (1996), who adopted the same approach to esti-
mating the SO2 shadow price of Wisconsin coal-burning power plants
in 1990–1992. Färe et al. (2005) used a quadratic directional distance
function (DDF) to estimate the shadowprice of SO2 for US electric utilities
in 1993 and 1997. Harkness (2006) used the translog functional form to
estimate CO2 shadow prices in the US electric utility industry. Marklund
and Samakovlis (2007) used DDF to estimate the MACs of CO2 emissions
for the EUmember states in 1990–2000. Rezek andCampbell (2007)used
ordinary least squares and generalized maximum entropy estimators to
estimate the shadow prices of CO2, SO2, NOx andmercury of 260 US elec-
tric power plants. Gupta (2006), Park and Lim (2009) andMatsushita and
Yamane (2012) estimated theMAC of CO2 in the electric power sectors of
India, Korea, and Japan, respectively.

The nonparametric method, e.g., data envelopment analysis
(DEA), have also been used to estimate production technology and
the shadow prices of undesirable outputs. Boyd et al. (1996) used
DEA to estimate the efficient frontier and the MAC of SO2 for 29
coal-burning utilities in the US electric power industry. Lee et al.
(2002) showed that the shadow price of a pollutant was the product
of the inefficiency correction factor and the slope to the frontier.1 Lee
et al. (2014) developed a novel framework by integrating DDF/DEA
with engineering-economic approach to estimating the shadow
price of CO2 in Korean power plants.2 More recently, Zhou et al.
(2015) conduct a comparison between nonparametric and

parametric approaches in the context of estimating the shadow
prices of CO2 emissions in different industrial sectors.

A review of previous studies shows that DDF has received increasing
attention in estimating the shadow prices of undesirable outputs. A no-
table fact is that the shadow price value is dependent on the direction
projected to the frontier; that is, the shadow price is calculated based
on the projection point on the frontier (Zhou et al., 2014). Coggins and
Swinton (1996) derived relatively lower shadowprice due to the choice
of positive directions for both desirable and undesirable outputs to-
wards the frontier, followed by Turner (1995) with a positive direction
of desirable output, and then Boyd et al. (1996)with a positive direction
of desirable output and a negative direction of undesirable output. Lee
et al. (2002) gave the higher shadow price due to negative directions
of both desirable and undesirable outputs. Clearly, the pre-determined
direction projected to the frontier affects the shadow price estimation.
A question immediately comes out: how to determine an appropriate
direction? One purpose of this paper is to introduce a two-stage
benchmarking technique to determine the directional vector: narrows
down the infinite possible vectors into two alternatives in the first
stage and derives the better one in the second stage (see Section 4.2).

In addition, we also find that most previous studies estimated the
shadow prices of individual undesirable outputs separately. For in-

stance, the equation pb ¼ pyð∂D
!

Oðx;y;b;gy ;gbÞ
∂b = ∂D

!
Oðx;y;b;gy ;gbÞ

∂y Þ is often used

to estimate the shadow price, where pb is the shadow price of pollutant

b, py is the price of desirable output y and D
!

Oðx; y; b; gy; gbÞ is the direc-
tional output distance function (Färe et al., 2005; Lee et al., 2002). This
equation, which takes derivatives with respect to one specific undesir-
able output to estimate its shadow price,3 implicitly assumes that a
firm can generate only one type of pollutant at a time when increasing
one extra unit of input. That is, estimating the shadow price of SO2 is in-
dependent of estimating the shadowprice of NOx. In reality, the produc-
tion process generates multiple undesirable outputs simultaneously
when producing desirable outputs, e.g., burning 1 ton of coal emits
around 1.46 to 2.57 tons of CO2, 0.02 tons of SO2 and 0.0045 to
0.0077 tons of NOx (Albina and Themelis, 2003; EIIP, 2001; Radovic,
1997).4 Thus, estimating shadow prices separately may lead to an over-
estimation of marginal productivity and an underestimation of shadow
price. To overcome this issue, in this paper we propose a generalized di-
rectional marginal productivity (DMP) estimation of multiple outputs.
We apply the proposed approach to estimating the directional shadow
prices (DSP) of CO2, SO2 and NOx given a prior-determined direction
in a case study of US coal-fired power plants between 1990 and 2010.
With the direction derived from our two-stage technique, the underes-
timation of shadow prices resulting from the use of separate marginal
productivity estimation could be corrected.

The remainder of this paper is organized as follows. Section 2 intro-
duces the DMP estimation. Section 3 develops the directional shadow
prices (DSP) estimation of pollutants. Section 4 describes the empirical
case study of the US coal power industry to estimate the DSPs of CO2,
SO2 and NOx. Section 5 concludes.

2. Directional marginal productivity via directional
distance function

Marginal productivity (MP) represents the extra output generated
by onemore unit of an input. Given a specific direction, DMP represents

1 The inefficiency correction factor is the inefficiency ratio between desirable and unde-
sirable outputs, whichmaps an inefficient point to the corresponding point on the produc-
tion frontier.

2 Despite the applicability of DEA in estimating shadow price, the DEA estimator is sen-
sitive to outliers and the shadow price values equal to zero are quite common. Thus,
Kuosmanen (2008) proposed a convex nonparametric least squares (CNLS) approach by
integrating the merits of both parametric and nonparametric approaches. Kuosmanen
and Johnson (2010) showed that DEA is a special case of CNLS with sign constraints on er-
ror terms. Mekaroonreung and Johnson (2012) used CNLSwith random noise to estimate
the shadow prices of SO2 and NOx in US bituminous coal power plants.

3 The derivative can be obtained from the dual variable of output constraints in DEA
(Lee et al., 2002) or the parameterization of the distance function (Färe et al., 2005).

4 The components of coal directly affect the pollutant generation. Here, on average,
1 ton of coal-burning generates 1.4613 (39.85% carbon in a high ash coal) to 2.57 (70% car-
bon in bituminous coal) tons of CO2, 0.02 tons of SO2 (about 1% sulfur), and 0.0045 to
0.0077 tons of NOx (about 1% nitrogen). The substantial emissions vary and depend on
the sulfur content of the coal.
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