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a b s t r a c t

We consider two reverse logistics systems where returned products are as good as new. For the first

system, the product return flow is independent of the demand flow. We prove that the optimal policy is of

base-stock type and we establish monotonicity results for the optimal base-stock levels, with respect to

the system parameters (arrival rate, production rate, return rate, production cost, lost-sale cost, return

cost and holding cost). We also provide an efficient algorithm to compute the optimal base-stock level. For

the second system, demands and returns are strongly correlated: a satisfied demand induces a product

return after a stochastic return lead-time, with a certain probability. When the return lead-time is null, we

extend the results obtained for the first system. When the return lead-time is positive, the optimal control

problem is more complex and we do not prove that the optimal policy is of base-stock type. However, we

provide a framework to analyse base-stock policies. Finally, we carry out a numerical study on many

scenarios to investigate the impact of ignoring dependency between demands and returns. We observe

that ignoring this dependency yields to non-negligible cost increase.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Recycling and recovery of used products have drawn attention of
companies for several years, not only for ecological reasons, but also
for legal and economical ones. At the same time, customers return
more and more items to the producers for numerous reasons (DeCroix
and Zipkin, 2005). The returned items constitute return flows that
must be taken into account. The management of this material flow,
opposite to the conventional supply chain flow, is addressed in the
rapidly expanding field of reverse logistics (Fleischmann et al., 1997).
From a logistic point of view, and regardless of why they occur,
product returns complicate the management of an inventory system
(DeCroix et al., 2005). First, returns represent an exogenous inbound
material flow causing an increase of the inventory between replen-
ishments. Second, returned products – when recovered – give another
alternative supply source for replenishing the serviceable inventory
(Fleischmann and Kuik, 2003). Several researches investigated the
influence of product returns on inventory control. For an overview, we
refer the reader to Fleischmann et al. (1997).

Most of the models do not take into account the relation between
returns and demand (see for instance Fleischmann et al., 2002).
de Brito and Dekker (2001) have explored the assumptions generally
made in stochastic models with product returns such as the
assumption of independence between returns an demand. They

conclude that it is necessary to break with this traditional assumption.
Most of the models with product returns that are investigated assume
a total, or partial, independence between demanded items and
returned ones. This is owed to the great complexity which could
be led by the relaxation of this hypothesis.

Among the authors that consider the dependency relation of
returns with demand, Simpson (1978) considers a repairable inven-
tory problem where the dependency between the demand process
and return process is allowed only in the same period. Kiesmueller
and van der Laan (2001) develop a periodic review model with
constant return and procurement lead-times. They compare the case
of dependent returns with the case of independent returns and obtain
numerically that the average cost is smaller in the dependent case.
Cheung and Yuan (2003) consider a continuous review model with
Poisson demand, exponential return lead-time and instantaneous
procurement lead-time. They adopt an (s,S) inventory policy and
develop an algorithm to compute the optimal replenishment para-
meters. However, none of these models investigate the impact of
neglecting correlation between demand and returns.

In this paper, we relax the instantaneous procurement lead-time
assumption of Cheung and Yuan (2003). We use the framework of
make-to-stock queues (Veatch and Wein, 1996; Ha, 1997) to model a
stochastic and capacitated production process by a single exponential
server. This framework allows us to thoroughly characterize the
optimal control policy. We consider two make-to-stock systems. In
the first one, demands and returns are independent Poisson processes.
We prove that the optimal policy is of base-stock type. We establish
monotonicity results for the optimal base-stock levels, with respect to
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the system parameters (arrival rate, production rate, return rate,
production cost, lost-sale cost, return cost and holding cost). We then
compute analytically the average cost for a given base-stock level and
provide properties of the average cost with respect to the base-stock
level. In the second model, demands and returns are correlated: a
satisfied demand induces a product return with a certain probability
after a stochastic return lead-time. We extend the results of the first
model when the return lead-time is null. This special case is
interesting for several reasons. It is a tractable case where the impact
of ignoring dependence between returns and demands is maximum.
It also provides a good approximation for short-term returns. When
the return lead-time is positive, the structure of the optimal policy is
more complex to establish and depends on whether or not we can
observe which sold products will be returned. The assumption of
observability is not realistic in most of situations and we will not
consider this case. When there is no observability, the production
decisions can be based only on the inventory level. For this case, we
restrict the analysis to base-stock policies and we suggest a numerical
procedure to compute the optimal base-stock policy.

Finally, we carry out a numerical study to investigate the impact
of ignoring dependency between demand and returns. We first
compare the system with independent returns to the system with
dependent returns. Then we suggest a heuristic for the system with
dependent returns, based on the system with independent returns.
We begin by investigating thoroughly the zero return lead-time
before looking at the influence of return lead-time.

The remainder of this paper is organized as follows. Section 2
(resp., Section 3) presents the formulation and results for the
system with independent (resp. dependent) demand and return
processes. These results allow us, in Section 4, to study the impact
of ignoring correlation of demand and returns. Finally, in Section 5,
we conclude and suggest future research.

2. Model with returns independent of demands

We first consider a simple model where product returns and
demand are independent stochastic processes. We will refer to this
case as Model 1.

2.1. Formulation

We consider a make-to-stock system producing a single item.
The supplier can decide at any time to produce or not this item. The
unit production cost is cp. The processing time is exponentially
distributed with mean 1=m and completed items are stored in a
serviceable product inventory, where they incur an holding cost ch

per unit per unit time. Demands for those items arrive according to
a Poisson process with rate l. A demand that cannot be fulfilled
immediately, when the inventory is empty, is lost and incurs a lost-
sale cost cl including image cost, penalty cost, etc. We assume that
the production cost cp is smaller than the lost-sale cost cl, otherwise
it is optimal to idle production all the time.

We also suppose that there are random returns of items (Fig. 1)
that are immediately available to serve customer demand. The
inventory is common to new and returned products which are
considered as good as new. In this first model, returns occur
according to a Poisson process, independent of the demand process,
with rate d. Let p¼ d=l be the proportion of returned products if all
demands were satisfied, and q¼1�p. We emphasize that p is larger
than the proportion of returned products since some demands are
not satisfied. We assume that the return rate is smaller than the
demand rate, i.e. dol (or equivalently 0rpo1). In an infinite
planning horizon, this assumption clearly holds if returns are
linked to previously satisfied demands. It also guarantees the
stability of the stock level. A return incurs a return cost cr including

logistics return costs (repackaging, handling) and possibly the
reimbursement of the customer. The state of the system can be
summarized by X(t), the stock level at time t (including new and
returned products).

A policy p specifies, at any time, when to produce or not. The
objective of the supplier is to find the optimal policy minimizing
expected discounted costs over an infinite time horizon. We denote
by b40 the discount rate.

2.2. Characterization of the optimal policy

We prove in this section that the optimal policy is a base-stock
policy.

Definition 1. A base-stock policy, with base-stock level S, states to
produce whenever the stock level is strictly below S and not to
produce otherwise.

The problem of finding the optimal policy can be modelled as a
continuous-time Markov decision process (MDP). We restrict our
analysis to stationary markovian policies since there exists an
optimal stationary markovian policy (Puterman, 1994).

We define vpðxÞ as the expected total discounted cost associated
to policy p and initial state x. We seek to find the optimal policy p�
minimizing vpðxÞ and we let v�ðxÞ ¼ vp

�

ðxÞ denote the optimal value
function:

v�ðxÞ ¼min
p

vpðxÞ

We denote by b the discount factor. Then, we can uniformize
(Lippman, 1975) the MDP with rate g4bþlþmþd and the optimal
value function can be shown to satisfy the following optimality
equations:

v�ðxÞ ¼ Tv�ðxÞ, 8xA N

where N is the set of natural numbers and operator T is a
contraction mapping defined as

TvðxÞ ¼
1

g ½chxþmT1vðxÞþlT2vðxÞþdT3vðxÞþðg�b�l�m�dÞvðxÞ�

ð1Þ

and

T1vðxÞ ¼min½vðxÞ,vðxþ1Þþcp�

T2vðxÞ ¼
vðx�1Þ if x40

vðxÞþcl if x¼ 0

(

T3vðxÞ ¼ vðxþ1Þþcr

Operator T1 corresponds to production decisions while operator T2

corresponds to demand arrivals. Operator T3 is associated to
product return events.

To prove that the optimal policy is of base-stock type, it is
sufficient to show that the optimal value function v*(x) is convex in
the stock level x. A function v in N is said to be convex if and only if
DvðxÞ ¼ vðxþ1Þ�vðxÞ is non-decreasing in x. We will also use the
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Fig. 1. Returns independent of demand.
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