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h i g h l i g h t s

• Wemodel the upper tail of wealth data taken from various ‘rich lists’.
• Power-law model is consistent with data only in 35% of analysed data sets.
• Even if data are consistent with a power law, other distributions are plausible too.
• Most plausible alternatives include the log-normal and stretched exponential models.

a r t i c l e i n f o

Article history:
Received 31 March 2013
Received in revised form 22 October 2013
Available online 22 March 2014

Keywords:
Power-law model
Wealth distribution
Goodness-of-fit
Model selection
Pareto model

a b s t r a c t

We use data on the wealth of the richest persons taken from the ‘rich lists’ provided by
business magazines like Forbes to verify if the upper tails of wealth distributions follow,
as often claimed, a power-law behaviour. The data sets used cover the world’s richest
persons over 1996–2012, the richest Americans over 1988–2012, the richest Chinese
over 2006–2012, and the richest Russians over 2004–2011. Using a recently introduced
comprehensive empirical methodology for detecting power laws, which allows for testing
the goodness of fit as well as for comparing the power-law model with rival distributions,
we find that a power-lawmodel is consistentwith data only in 35%of the analyseddata sets.
Moreover, even if wealth data are consistent with the power-law model, they are usually
also consistentwith some rivals like the log-normal or stretched exponential distributions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The search for universal regularities in income and wealth distributions has started over one hundred years ago with the
famous work of Ref. [1]. His work suggested that the upper tails of income and wealth distributions follow a power law,
which for a quantity x is defined as a probability distribution p(x) proportional to x−α , with α > 0 being a positive shape
parameter known as the Pareto (or power-law) exponent. Pareto’s claim has been extensively tested empirically as well as
studied theoretically [2–6]. The emerging consensus in the empirical econophysics literature is that the bulk of income and
wealth distributions seems to follow the log-normal or gamma distributions, while the upper tail follows the power-law dis-
tribution. Recent empirical studies found apower-lawbehaviour in the distribution of income inAustralia [7,8], Germany [9],
India [10], Italy [9,11,7], Japan [12,13], the UK [14,9,15], and the United States [14,9,16]. Another group of studies discovered
a power-law structure of the upper tail of modernwealth distributions in China [17], France [18], India [10,19], Sweden [20],
the UK [18,14,20,21], and the United States [22,18,20,23]. Surprisingly, analogous results were obtained for the wealth dis-
tribution of aristocratic families in mediaeval Hungary [24] and for the distribution of house areas in ancient Egypt [25].
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However, as shown recently by Ref. [26], detecting power laws in empirical data may be a difficult task. Most of the
existing empirical studies exploit the fact that the power-law distribution follows a straight line on a log–log plot with the
power-law exponent equal to the absolute slope of the fitted line. The existence of power-law behaviour is often confirmed
visually using such a plot, while the exponent is estimated using linear regression. Such an approach suffers, however, from
several drawbacks [27,26]. First, the estimates of the slope of the regression line may be very biased. This often happens
because researchers assume that all available data follow a power-lawmodel, while normally, it is so only for the upper-tail
values above some lower bound. This lower bound on the power-law behaviour should therefore be estimated, if we want
to obtain an unbiased estimate of the power-law exponent. Second, the standard R2 statistic for the fitted regression line
cannot be treated as a reliable goodness-of-fit test for the power-law behaviour. This is because distributions different from
power-law distributions can approximate a power-law behaviour over a large part of the range of the variables under study
resulting in a high value of R2. Third, even if traditional methods succeed in verifying that a power-law model is a good fit
to a given data set, it is still possible that some alternative model fits the data better. A complete empirical analysis would
therefore require conducting a statistical comparison of the power-law model with some other candidate distributions.

Using a more refined methodology for measuring power-law behaviour, Ref. [26] has shown that the distribution of
wealth among the richest Americans in 2003 as compiled in Forbes’ annual US ‘rich list’ is not fitted well by a power-
law model. Recently, Ref. [28] has tested formally for a power-law behaviour in Forbes’ data on the wealth of the world’s
billionaires for the years 2000–2009. He has found that the Kolmogorov–Smirnov, Anderson–Darling andχ2 goodness-of-fit
tests all reject power-law behaviour for each of the data sets he used. However, Ref. [28] has tested if the whole range of
observations in his data sets follow a power-law behaviour, while in fact this may apply only to a subset of the very largest
observations. A more appropriate methodology for detecting a power-law distribution would therefore include a procedure
for estimating a lower bound on the power-law behaviour.

The present paper uses a complete empirical methodology for detecting power laws introduced by Ref. [26] to verify
if the upper tails of wealth distributions obey the power-law model or if some alternative model fits the data better. We
estimate both the power-law exponent and the lower bound on the power-law behaviour. We also use goodness-of-fit tests
and compare power-law fits with fits of alternative models. We analyse a large number of data sets on wealth distributions
published annually by Forbes and other business magazines concerning wealth of (1) the richest persons in the world, (2)
the richest Americans, (3) the richest Chinese, and (4) the richest Russians.

The paper is organized as follows. Section 2 presents the statistical framework used for measuring and analysing power-
law behaviour in empirical data introduced by Ref. [26]. Section 3 describes our data sets drawn from the lists of the richest
persons published byForbes and other sources,while Section 4 provides the empirical analysis. Section 5 concludes the paper.

2. Statistical methods

In order to detect a power-law behaviour in wealth distributions, we use a toolbox proposed by Ref. [26]. A density of
continuous power-law model is given by
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The maximum likelihood estimator (MLE) of the power-law exponent, α, is
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where xi, i = 1, . . . , n are independent observations such that xi > xmin. The lower bound on the power-law behaviour,
xmin, will be estimated using the following procedure. For each xi > xmin, we estimate the exponent using the MLE and then
we compute the well-known Kolmogorov–Smirnov (KS) statistic for the data and the fitted model. The estimate x̂min is then
chosen as a value of xi for which the KS statistic is the smallest.1 The standard errors for estimated parameters are computed
with standard bootstrap methods with 10,000 replications.

The next step in measuring power laws involves testing the goodness of fit. A positive result of such a test allows us to
conclude that a power-law model is consistent with a given data set. Following Ref. [26] again, we use a test based on a
semi-parametric bootstrap approach. The procedure starts with fitting a power-law model to data using the MLE for α and
the KS-based estimator for xmin and calculating a KS statistic for this fit, k. Next, we generate a large number of bootstrap
data sets that follow the originally fitted power-law model above the estimated xmin and have the same non-power-law
distribution as the original data set below x̂min. Then, power-law models are fitted to each of the generated data sets using
the same methods as for the original data set, and the KS statistics are calculated. The fraction of data sets for which their
own KS statistic is larger than k is the p-value of the test. It represents a probability that the KS statistic computed for data
drawn from the power-lawmodel fitted to the original data is at least as large as k. The power-law hypothesis is rejected if

1 The Kolmogorov–Smirnov statistic was also proposed by Ref. [27] as a goodness-of-fit test for the discrete power-law model, assuming, however, that
the lower bound on power-law behaviour is known.
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