
Neural Networks 22 (2009) 614–622

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2009 Special Issue

Neural networks with multiple general neuron models: A hybrid computational
intelligence approach using Genetic Programming

Alan J. Barton ∗, Julio J. Valdés, Robert Orchard
Knowledge Discovery Group, Institute for Information Technology, National Research Council Canada, Ottawa, Ontario, Canada

a r t i c l e i n f o

Article history:
Received 5 May 2009
Received in revised form 11 June 2009
Accepted 25 June 2009

Keywords:
General neuron model
Evolutionary Computation
Genetic Programming
Hybrid algorithm
Machine learning
Parameter space
Visualization

a b s t r a c t

Classical neural networks are composed of neurons whose nature is determined by a certain function
(the neuronmodel), usually pre-specified. In this paper, a type of neural network (NN-GP) is presented in
which: (i) each neuronmay have its ownneuronmodel in the formof a general function, (ii) any layout (i.e
network interconnection) is possible, and (iii) no bias nodes or weights are associated to the connections,
neurons or layers. The general functions associated to a neuron are learned by searching a function space.
They are not provided a priori, but are rather built as part of an Evolutionary Computation process based
onGenetic Programming. The resulting network solutions are evaluated based on a fitnessmeasure,which
may, for example, be based on classification or regression errors. Two real-world examples are presented
to illustrate the promising behaviour on classification problems via construction of a low-dimensional
representation of a high-dimensional parameter space associated to the set of all network solutions.

© 2009 Published by Elsevier Ltd

1. Introduction

Many different neuron models, neural network architectures
and learning procedures have been proposed, addressing twomain
types of problems: regression and classification. Both can be seen
as derived from the general problem of function approximation.
The feed forward neural network (multilayer perceptron) (Bishop,
2004; Ripley, 1996) is probably the most popular and it is
composed of a layout of similar neurons arranged into layers,
trained with the backpropagation algorithm or one of its many
variants. In networks of these types, the goal of the learning
procedure is to find the vector of weights for each neuron in the
network such that a given function is optimized (a classification
error, a least squared error, an entropy measure, etc.).
From a more general perspective, the networks may be com-

posed of neurons in which the neuron model is not fixed and
in which the architecture is not necessarily a layered one. Fig. 1
shows a general network architecture with general multiple neu-
ron models and Fig. 2 shows the same neuron models for a layered
network. In particular, the neurons do not consist of the composi-
tion of aggregation and activation functions endowed with a vec-
tor of weights (possibly with a bias). Rather, they are given by
a general analytical (deterministic) function, which can be con-
nected in anyway specified by a directed graph in order to define a

∗ Corresponding author. Tel.: +1 613 991 5486; fax: +1 613 952 0215.
E-mail addresses: alan.barton@nrc-cnrc.gc.ca (A.J. Barton),

julio.valdes@nrc-cnrc.gc.ca (J.J. Valdés), orchardr@rogers.com (R. Orchard).

network. In this case, the learning procedure is oriented to find
the collection of functions (and their parameters) such that the
network output optimizes a given performance measure, as pre-
viously indicated. The use of general analytic functions as neuron
models is appealing because they are: (i) easy to understand by
humans, (ii) the preferred building blocks of modeling, and (iii) a
classical and highly condensed form of knowledge. There aremany
possible approaches for Evolutionary Computation based learning
of neural networks (Koehn, 1996; Stanley, 2004; Yao, 1993; Zhang
& Mühlenbein, 1993). For example, Montana and Davis (1989) en-
code theweights of a fixed architecture neural networkwithin one
chromosome and use a Genetic Algorithm (GA) to perform global
optimization in order to find potential weight solutions for a sonar
image classification problem.
This paper usesmultiple chromosomes (Valdés, Orchard, & Bar-

ton, 2007) and learns the complete function associated to a neuron,
not only the weights (Barton & Valdés, 2008; Barton, 2009). The
purpose of this paper is to extend previous results (Barton, Valdés,
& Orchard, 2009) and to report the promising empirical behaviour
of NN-GP when used for two real-world classification problems;
underground cave detection and hydrochemical research in the
Arctic. In particular, a low-dimensional visual representation of the
algorithm’s parameter spaces are used to demonstrate the network
solution qualities w.r.t. their parameters.

2. Evolutionary Computation

A general Evolutionary Computation (EC) algorithm (Algorithm
1) consists of a problem, P, as input and a set of solutions, S, as

0893-6080/$ – see front matter© 2009 Published by Elsevier Ltd
doi:10.1016/j.neunet.2009.06.043

http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:alan.barton@nrc-cnrc.gc.ca
mailto:julio.valdes@nrc-cnrc.gc.ca
mailto:orchardr@rogers.com
http://dx.doi.org/10.1016/j.neunet.2009.06.043


A.J. Barton et al. / Neural Networks 22 (2009) 614–622 615

Fig. 1. General Neural Network containing (n) neurons where all activities occur
(e.g. activation, aggregation). Weights are learned within the neuron. ℵi(·) is the
function associated to the ith neuron;with output oi . The networkmay be organized
into layers. Not all possible connections are shown. No bias neurons are used.

output. Algorithm 1 consists of three main stages: (i) initialization
Line 1–4, (ii) processing generations Line 5–11, and (iii) post-
processing Line 12.

Algorithm 1: General EC Specification
Input : A problem, P. (i.e. a question)
Output: A set of solutions, S. (i.e. possible answer(s) to the

question)
Let A ⇐ archivePopulations(∅,∅) ;1
Let FP ⇐ constructPopulations(∅) ;2
computeFitness(FP) ;3
A ⇐ archivePopulations(A,FP) ;4
while not terminationCriteriaSatisfied(FP ) do5
Let FP ′ ⇐ constructPopulations(FP) ;6
computeFitness(FP ′) ;7
FP ⇐ combinePopulations(FP ,FP ′) ;8
A ⇐ archivePopulations(A,FP) ;9
FP ⇐ selectIndividuals(FP ,A) ;10

end11
S⇐ selectIndividuals(∅,A) ;12

2.1. Genetic Programming (GP)

Analytic functions are among the preferred building blocks
for modeling and a highly condensed form of knowledge, but
direct discovery of general analytic functions poses enormous
challenges because of the size of the search space. This problem

can be approached from a computational intelligence perspective
via Evolutionary Computation. In particular, Genetic Programming
techniques aim at evolving computer programs, which ultimately
are functions.
Genetic Programming was introduced by Koza (1989, 1992,

1994) and Koza, Bennett, Andre, and Keane (1999) as an extension
of genetic algorithms that evolves a population of computer
programs. In Algorithm 1, the family of populations of individuals
FP (Line 2,8,9,10) or FP ′ (Line 6,8) is usually a family composed
of one set. In other words, FP and FP ′ are each a simple
set of individuals I. GP programs may be symbolic expression
trees, which, essentially, are functions. Algorithm 1 uses Koza’s
computer programs on lines (Line 2,6,8), and names them
internal representations. More specifically, one of Koza’s computer
programs is called an S-expression (S stands for symbolic) and is
used, for example, within the List Processing Language (LISP). An
example of a LISP S-expression that represents a neural network is
given in Koza and Rice (1991).

2.2. Gene expression programming (GEP)

Gene expression programming (GEP) (Ferreira, 2001, 2006)
is a variant of Genetic Programming where individuals are
expression trees encoded as simple strings of fixed length
(chromosomes) representing entities of different sizes and shapes,
generally nonlinear expressions. For the interplay of the GEP
chromosomes and the expression trees (ET), GEP uses an
unambiguous translation system to transfer the language of
chromosomes into the language of expression trees and vise
versa (Ferreira, 2006). The set of genetic operators applied to GEP
chromosomes always produces valid ETs.
The chromosomes in GEP itself are composed of genes

structurally organized in a head and a tail (Ferreira, 2001). The
head contains symbols that represent both functions (elements
from a function set F) and terminals (elements from a terminal
set T), whereas the tail contains only terminals. Therefore, two
different alphabets occur at different regions within a gene. For
each problem, the length of the head h is chosen, whereas the
length of the tail t is a function of h, and the number of arguments
of the function with the largest arity (nmax). The length of the tail
is evaluated by t = h(nmax − 1)+ 1.
As an example, consider a gene composed of the function set

F = {Q ,+,−, ∗, /}, where Q represents the square root function,
and the terminal set T = {a, b}. In this case nmax = 2. For
instance h = 10 and t = 11, the length of the gene is 10 +
11 = 21. Such a gene looks like (the tail is shown in bold): ?
Q-b++a/-bbaabaaabaab, and corresponds to the mathematical
equation f (a, b) =

√
b ·
((
a+ b

a

)
− ((a− b)+ b)

)
simplified as

f (a, b) = b·
√
b
a .

GEP chromosomes are usually composed ofmore than one gene
of equal length. For each problem the number of genes as well as
the length of the head has to be chosen. Each gene encodes a sub-ET

Fig. 2. Special case of the general neural network: a feed forward neural network for one specific architecture (NN : n−m− c). There are 3 layers and (n+m+ c) neurons
where neurons in layer i are connected to neurons in layer i + 1. Neurons may not use all inputs; implying a connectivity upper bound. Possibilities exist providing more
reuse (e.g. neurons in layer imay connect to neurons in all layers greater than i).



http://isiarticles.com/article/52123

