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a b s t r a c t

The integration of production and marketing planning is crucial in practice for increasing a firm’s profit.
However, the conventional inventory models determine the selling price and demand quantity for a retai-
ler’s maximal profit with exactly known parameters. When the demand quantity, unit cost, and produc-
tion rate are represented as fuzzy numbers, the profit calculated from the model should be fuzzy as well.
Unlike previous studies, this paper develops a solution method to find the fuzzy profit of the integrated
production and marketing planning problem when the demand quantity, unit cost, and production rate
are represented as fuzzy numbers. Based on Zadeh’s extension principle, we transform the problem into a
pair of two-level mathematical programming models to calculate the lower bound and upper bound of
the fuzzy profit. According to the duality theorem of geometric programming technique, the two-level
mathematical program is transformed into the one-level conventional geometric program to solve. At
a specific a-level, we can derive the global optimum solutions for the lower and upper bounds of the
fuzzy profit by applying well-developed theories of geometric programming. Examples are given to illus-
trate the whole idea proposed in this paper.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In high-tech markets, Moore’s Law operates unforgettably:
Every 18 months or so, improvements in technology double prod-
uct performance at no increase in price. Today the technological
innovation is speeded up than ever. The selling price, purchase
cost, and demand quantity of a technology product become more
and more uncertain in the market. For example, the component
costs and selling price of personal computer assembly industry
are decreasing at a sustained and significant rate (Khouja, Park, &
Saydam, 2005). The integration of production and marketing func-
tions has been recognized to be crucial in practice for increasing a
firm’s profit and decreasing their conflicts by reducing losses in-
curred from separate decision makings.

Pricing and lot sizing are two important strategies that concern
simultaneous determination of an item’s price and lot size to max-
imize a firm’s profit for constant but price-dependent demands
over a planning horizon. For increasing a firm’s profit and decreas-
ing the conflicts by reducing losses incurred from separate decision
makings of production and marketing, the integration of produc-
tion and marketing functions has been recognized to be crucial
in practice. Different from the classic production and marketing
planning, the demand is typically determined as a decreasing

power function of the selling price with constant elasticity as in
monopolistic pricing situations (Lee, 1993). In such a situation,
geometric programming technique is an efficient and effective
method to solve nonlinear programming problem with the terms
in power functional form in the objective function and constraints
(Beightler & Philips, 1976; Duffin, Peterson, & Zener, 1967).

The geometric programming technique has been applied to
solve production and inventory problems. Worrall and Hall
(1982) employ geometric programming technique to solve an
inventory model with multiple items subject to multiple con-
straints. Cheng (1991) proposes an economic order quantity
(EOQ) model with demand-independent unit cost and derived the
optimal solution by employing geometric programming technique.
Lee (1993) utilizes geometric programming techniques to deter-
mine the selling price and order quantity for a retailer. Kim and
Lee (1998) investigate the fixed and variable capacity problems of
jointly determining an item’s price and lot size for a profit-maximi-
zation firm facing price-dependent demand. Jung and Klein (2005)
employ the geometric programming technique to analyze three
EOQ based inventory models under total cost minimization.
Sadjadi, Oroujee, and Aryanezhad (2005) present an integrated
production, marketing and inventory model which determines
the production lot size, marketing expenditure and product’s sell-
ing price through geometric programming. Mandal, Roy, and Maiti
(2006) formulate an EOQ model with and without truncation on the
deterioration term. The problem is converted to the minimization
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of a signomial expression with a posynomial constrain and is solved
by modified geometric programming and nonlinear programming
methods. Leung (2007) proposes an economic production quantity
(EPQ) model with a flexible and imperfect production process and
utilizes geometric programming technique to establish more gen-
eral results using the arithmetic–geometric mean inequality. Liu
(2007) considers the Cobb-Douglas production function with input
quantity discount and employs geometric programming technique
to derive the objective value for the profit-maximization problem.

Those studies share one common characteristic that the param-
eters in the models are precisely known. However, in real world
applications, the parameters in the model might be inexact and
imprecise in nature. There are also situations that the data cannot
be collected without errors. Fuzzy set theory has been widely used
in production and inventory management researches (for example,
Chen, 2011; Chuu, 2009; Karakas, Koyuncu, Erol, & Kokangul, 2010;
Liang, 2008; Liu, 2005, 2008, 2011; Vasant, 2006). Roy and Malti
(1997) formulate a fuzzy single-objective lot-sizing model and
the solution is derived by applying geometric programming. Man-
dal, Roy, and Maiti (2005) utilize the geometric programming tech-
nique to solve the fuzzy multi-item inventory problem where the
multiple objectives are considered. Islam and Roy (2006) propose
a fuzzy production lot-sizing model with the consideration of flex-
ibility and reliability in production processes. Panda, Kar, and Maiti
(2008) utilize the fuzzy stochastic programming and geometric
programming techniques to solve multi-item EOQ problems under
fuzzy and fuzzy stochastic resource constraints. Sadjadi, Ghazan-
fari, and Yousefli (2010) propose a pricing and marketing model
with fuzzy parameters. In their model, there are three elasticity,
namely, selling price, marketing expenditure, and lot size, are as-
sumed to be fuzzy numbers. The fuzzy logic controller is designed
to derive the optimum or near optimum values for all decision
variables.

When the parameters are fuzzy numbers, the objective values
should be fuzzy as well. In this study, we presume that the scaling
constant to demand, scaling constant to unit cost, and scaling con-
stant to production rate are convex fuzzy numbers. Based on Za-
deh’s extension principle, we develop the solution method for
the fuzzy integrated production and marketing planning problem.
At a specific a-level, a pair of two-level mathematical program-
ming models is formulated to calculate the lower bound and upper
bound of the fuzzy profit of the model. According to the duality
theorem of geometric programming technique, the two-level
mathematical program is transformed into the one-level conven-
tional geometric program. Solving the transformed pair of geomet-
ric programming problems produces the interval of the profit at
the specified a-level. Since they are exact optimum solutions, no
heuristics are required. The associated selling price, marketing
expenditure, and production lot size are then determined.

The rest of this paper is organized as follow. We first describe
the problem and model formulation with fuzzy parameters. Next,
a pair of two-level mathematical programs, which is based on
extension principle, for calculating the bounds of the profit is for-
mulated; we transform the two-level mathematical programs into
one-level conventional geometric programs to solve. Then we use
two examples to explain the idea of this paper. Finally, some con-
clusions are drawn from the discussion.

2. The problem

Consider a product is being introduced to customers. The selling
price and marketing expenditure of the product have an impact on
demand quantity. We suppose that the demand quantity d can be
regarded as the function of price p and marketing expenditure m
with the associated elasticity; that is, d = Kp�bmc, where K is the

scaling constant and b and c are the price elasticity and expenditure
elasticity, respectively. We assume b > 1, i.e., the price is elastic, and
0 < c < 1. The unit cost of this product is changing within a range
and the supplier offers quantity discount. We represent the unit
cost c as the decreasing function c = Rq�d, 0 < d < 1, in which q is
the production lot-size and R is the scaling constant for unit cost.
The discount factor d is a very small value. If d = 0, it means no quan-
tity discount. Let A and I be the setup cost and inventory carrying
cost rate, respectively, and let l be the production rate, which is as-
sumed to increase as demand increases. Moreover, we consider that
when the demand slows down, the production rate needs to de-
crease for maintaining a lower holding cost. In this study, we let
l = Vd with V > 1, that is, l varies with d proportionally.

According to Sadjadi et al. (2005), we have the following formu-
lation for the profit per unit time:

Profit = F = total revenue – marketing cost – production cost –
set up cost – inventory holding cost

¼ pd�md� cd� Ad=q� Ic 1� d
l

� �
q
2
; ð1Þ

¼ pd�md� cd� Ad=q� Ic 1� d
Vd

� �
q
2
; ð2Þ

Let S = 1 � 1/V. Then Eq. (2) becomes:

F ¼ pd�md� cd� Ad=q� IcS
q
2
; ð3Þ

¼ Kp�bþ1mc � Kp�bmcþ1 � KRp�bq�dmc � AKp�bq�1mc

� 0:5IRSq�dþ1; ð4Þ
In this model we have three assumptions, namely, instanta-

neous replenishment, no shortage cost, and batch production
quantity. The objective of this model is to maximize the profit with
decision variables p, q, and m.

In (4) all the coefficients must be precise. However, the scaling
constants of K, R, and V in the functions of price, unit cost, and pro-
duction rate, respectively, may not be measured precisely due to
the fierce competitions and changing markets. Intuitively, if any
of the scaling constants is imprecise and can be represented as a
fuzzy number, the objective value should be a fuzzy number as
well. Let eK , eR, eV , and eS ¼ ½1� 1=eV � denote the fuzzy counterparts
of K, R, V, and S, respectively. Then, (4) becomes the following for-
mulation with fuzzy parameters:eF ¼ eKp�bþ1mc � eK p�bmcþ1 � eK eRp�bq�dmc � AeK p�bq�1mc

� 0:5IeReSq�dþ1; ð5Þ
Let leK , leR , and leS be the membership functions of eK ; eR; and eS,

respectively. We haveeK ¼ fðk;leK ðkÞÞjk 2 Kg; ð6ÞeR ¼ fðr;leRðrÞÞjr 2 Rg; ð7ÞeS ¼ fðs;leSðsÞÞjs 2 Sg; ð8Þ

where K, R, and S are the crisp universal sets of eK , eR, and eS. Denote
the a-cuts of eK , eR, and eS as:

Ka ¼ KL
a;K

U
a

h i
¼ ½minkfðk;leK ðkÞÞjleK ðkÞ

P ag;maxkfðk;leK ðkÞÞjleK ðkÞP ag�; ð9Þ

Ra ¼ RL
a;R

U
a

h i
¼ ½minrfðr;leRðrÞÞjleRðrÞ

P ag;maxrfðr;leRðrÞÞjleRðrÞP ag�; ð10Þ

Sa ¼ SL
a; S

U
a

h i
¼ ½minsfðs;leSðsÞÞjleSðsÞ

P ag;maxsfðs;leSðsÞÞjleSðsÞP ag�: ð11Þ
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