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The application of proportional–integral–derivative (PID) controllers to chemical processes may not achieve the
desired effect due to large time delay, model/plant mismatches, etc, which causes performance deterioration. In
view of this, the paper first proposes a new PID controller design based on dynamic matrix control (DMC) opti-
mization and then tests it on the residual oil outlet temperature in an industrial coke furnace. The resulting PID
controller shows that it has the superior character of DMC algorithm and, at the same time, the simple structure
as a traditional PID controller. Since model predictive control is effective in dealing with long time delays and
model/plant mismatches, the control performance under the proposed PID is improved compared with typical
PID controllers.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Processes with large time delay are very common in the chemical
industry. Due to the large time delay and model/plant mismatches,
the application of traditional proportional–integral–derivative (PID)
controller may not obtain the desired performance [1–3]. In view of
these problems, many methods are proposed. One typical method
may be the Smith predictor, which is also thought of as an advanced
PID control algorithm for time delayed processes [4–7]. Although the
Smith predictor can compensate for the time delay by first separating
it and then designing a PID based on the time-delay free part of the
process, results show that this kind of controller is sensitive to model/
process mismatch and thus is less effective for industrial applications.
Other advanced algorithms were also proposed to combine with the
Smith predictor for better performance [8–10]. However, these methods
obtain good performance in handling the long time delay processes by
assuming that the process and its dynamic model match well, which is
not the case for industrial engineering applications.

With the development of the computer control theory, model pre-
dictive control (MPC) has been proposed as an effective advanced
algorithm in dealing with large time delayed processes [11,12]. Based

on the obtained process model, MPC predicts the future trends of
process behavior and then calculates the corresponding control input.
Unlike the Smith predictor and other advanced PID controllers, MPC
can predict and compensate for the error caused by model/plant mis-
match such that exact process models are generally not very necessary
and still, improved engineering application results can be obtained.

However, limited by the cost, hardware and so on, the implementa-
tion of MPC is more complex than PID control, which provides chances
and challenges of finding a combination of both advantages of MPC and
PID. Some representatives are as follows. Xu, et al. proposed a PID con-
troller using generalized predictive control (GPC) framework and ob-
tained the performance as that of GPC [13]; however, the controller
derivation is based on linearization approximation. Amultivariable pre-
dictive fuzzy-PID control system was developed by incorporating the
fuzzy and PID control approaches into the predictive control framework
by Savran [14]. Lee and Yeo developed a new PID controller on the basis
of simplified GPC [15]. Many other advanced control algorithms were
also introduced to improve the performance of the traditional PID con-
troller in dealing with time delayed processes [16–21].

In this study, thedynamicmatrix control (DMC) algorithm is combined
with the PID control to obtain a new PID controller which bears the good
performance of the DMC algorithm and also the same structure as tradi-
tional PID controllers. The detailed design of suchDMC based PID isfirst il-
lustrated and then compared with typical PID controllers. Specially,
traditional PID controllers tuned by the Cohen–Coon method and IMC
method are used for comparison, where results are illustrated through a
case study of the outlet temperature regulation in an industrial coke
furnace.
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2. Typical PID tuning methods

For simplicity, we choose the general first order plus dead time
(FOPDT) model formulation that can be obtained by a step response
test as the process model. Notice that extension to higher order process
models is possible.

G sð Þ ¼ Ke−τs

Tsþ 1
ð1Þ

where K is the steady process gain, T is the time constant of the process
and τ is the time delay.

The C–Cmethod proposed by Cohen and Coon is an important engi-
neering tuning method because it is developed on the basis of the Z–N
method in order to compensate for its insufficiency in dealing with
time delayed processes [22]. Note that the internal model control
(IMC) based PID tuning method also shows its superiority because
the process model is explicitly used and the controller design can be
based on the “good” part of the process model [23]. The parameters of
the above two traditional PID controllers are tuned as follows.

Kp ¼ T
Kτ

16T þ 3τ
12T

� �
; Ti ¼

τ 32þ 6
τ
T
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13þ 8
τ
T

� � ; Td ¼ 4τ

11þ 2
τ
T

� � ð2Þ

Kp ¼ T þ 0:5τð Þ
K λþ 0:5τð Þ ; Ti ¼ T þ 0:5τ; Td ¼ Tτ

2T þ τ
ð3Þ

where Eq. (2) is the Cohen–Coon method and Eq. (3) is the IMC based
method. Kp is the proportional gain of the PID controller, Ti is the in-
tegral time of the PID controller, Td is the derivative time of the PID
controller, and λ in Eq. (3) is the IMC filter factor which is usually
chosen as λ N 0.8τ.

3. DMC based PID controller design

In this section, the DMC algorithm is introduced to optimize the
parameters of the PID controller. By doing so, the obtained PID control-
ler has the performance as the DMC algorithm and the simple structure
as the traditional PID controller simultaneously.

The model vector α = [α1, α2, ⋯, αN]T is obtained from the step
response test firstly, where N is the model length, α, α2, ⋯, αN is the cor-
responding unit step response data sampled by sampling time Ts. The
dynamic matrix of the model can be constructed as follows.

A ¼

a1 ⋯ 0
⋮ ⋱ ⋮
aM ⋯ a1
⋮ ⋮ ⋮
aP ⋯ aP−Mþ1

2
66664

3
77775 ð4Þ

where A is the dynamic matrix whose dimension is P × M, P is the
prediction horizon, andM is the control horizon, andwe usually require
N ≥ P ≥ M.

The future output prediction of the model calculated by control
increment N at time instant k − 1 is

yN1 k−1ð Þ ¼ yN0 k−1ð Þ þ αΔu k−1ð Þ ð5aÞ

where

yN1 k−1ð Þ ¼
h
y1ðk k−1j Þ; ⋯; y1ðkþ N−1 k−1j Þ

iΤ

yN0 k−1ð Þ ¼
h
y0ðk k−1j Þ; ⋯; y0ðkþ N−1 k−1j Þ

iΤ
ð5bÞ

yN1(k − 1) is the future prediction output at time instant k − 1 under

the effect of control increment Δu(k − 1), and yN0(k − 1) is the initial
prediction output at time instant k− 1; here k+ i|k denotes the predic-
tion for time instant k + i made at time instant k.

In terms of the obtained future output prediction,we need to correct
it because there are uncertainties that cause output prediction error; the
correcting method is chosen as follows.

ycor kð Þ ¼ yN1 k−1ð Þ þ he kð Þ ð6aÞ

where

ycor kð Þ ¼
h
ycorðk kj Þ; ⋯; ycorðkþ N−1 kj Þ

iΤ

ð6bÞ

ycor(k) is the corrected future prediction output at time instant k, y(k) is
the actual output of the process at time instant k, e(k) is the error
between the actual process output and model output prediction at
time instant k, h is the error correcting vector and α is the error correc-
tion coefficient.

For time instant k, the elements of ycor(k) need to be shifted to form
the initial prediction output, and the shifting process is as follows.

yN0 kð Þ ¼ Sycor kð Þ ð7aÞ

where S is the shifting matrix.

S ¼

0 1 0 ⋯ 0
0 0 1 0 ⋯
⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 1
0 0 ⋯ ⋯ 1

2
66664

3
77775 ð7bÞ

Note that y0(k + N|k), which is the last element of yN0(k), will be
replaced by ycor(k + N − 1|k) because of the model cutoff.

After obtaining the initial output prediction at time instant k, the
future model output prediction under the control increment sequence
ΔuM(k) = [Δu(k), ⋯, Δu(k + M − 1)]Τ can be calculated as follows.

yPM kð Þ ¼ yP0 kð Þ þ AΔuM kð Þ ð8aÞ

where

yPM kð Þ ¼
yM kþ 1ð jkÞ

⋮
yMðkþ P kj Þ

2
4

3
5; yP0 kð Þ ¼

y0 kþ 1ð jkÞ
⋮

y0ðkþ P kj Þ

2
4

3
5 ð8bÞ

yPM(k) is the future output prediction under the effect ofΔuM(k) at time
instant k, and yP0(k) is the initial output prediction at time instant k.

In order to simplify the calculation, here the control horizon M is
chosen to be 1; then the cost function is

min J kð Þ ¼ ref kð Þ−yP1 kð Þð ÞTQ ref kð Þ−yP1 kð Þð Þ þ rΔu2 kð Þ ð9aÞ

where

ref kð Þ ¼ ref 1 kð Þ; ref 2 kð Þ; ⋯; ref P kð Þ½ �Τ ð9bÞ

ref i kð Þ ¼ βiy kð Þ þ 1−βi
� �

c kð Þ
Q ¼ diag q1; q2; ⋯; qPð Þ

ð9cÞ

Here ref(k) is the reference trajectory, Q is the error weighting
matrix, q1, q2, ⋯, qP are the coefficients in Q, r is the control weighting
coefficient, β is the smoothing factor of reference trajectory, and yP1(k)
is the specific form of yPM(k) in whichM is 1.
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