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a b s t r a c t

The use of the direct filtering approach for INS/GNSS integrated navigation introduces
nonlinearity into the system state equation. As the unscented Kalman filter (UKF) is a
promising method for nonlinear problems, an obvious solution is to incorporate the UKF
concept in the direct filtering approach to address the nonlinearity involved in INS/GNSS
integrated navigation. However, the performance of the standard UKF is dependent on the
accurate statistical characterizations of system noise. If the noise distributions of inertial
instruments and GNSS receivers are not appropriately described, the standard UKF will
produce deteriorated or even divergent navigation solutions. This paper presents an
adaptive UKF with noise statistic estimator to overcome the limitation of the standard UKF.
According to the covariance matching technique, the innovation and residual sequences are
used to determine the covariance matrices of the process and measurement noises. The
proposed algorithm can estimate and adjust the system noise statistics online, and thus
enhance the adaptive capability of the standard UKF. Simulation and experimental results
demonstrate that the performance of the proposed algorithm is significantly superior to
that of the standard UKF and adaptive-robust UKF under the condition without accurate
knowledge on system noise, leading to improved navigation precision.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The INS/GNSS (Inertial Navigation System/Global Navi-
gation Satellite System) integration has proven to be a very
efficient means of navigation due to the short term accuracy
of INS allied with the long term accuracy of GNSS [1–6].
According to the differences of estimated system state, the
existing studies on using the Kalman filtering for INS/GNSS
integrated navigation can be divided into two categories, i.e.
the direct and indirect approaches [7,8]. The indirect
approach takes the navigation errors of the subsystems INS
and GNSS as the system state, and calculates its optimal

estimates. The direct approach uses the output navigation
parameters of the subsystems as the system state, and
directly obtains the navigation solution of the integrated
system by Kalman filtering. Compared to the indirect
method, the direct approach has the following advantages
[9,10]: (i) The system state equation directly describes the
dynamic process of navigation parameters, which exactly
reflects the evolution of the real state and is more accurate
than the first-order approximation of the indirect method;
(ii) Since the mechanical calibration equation of INS is the
key component of the system state equation, the Kalman
filtering does not only achieve the navigation solution from
the mechanical calibration equation, but it also plays a role
of filtering estimation, avoiding a great amount of repetitive
calculations. However, the use of the direct approach for
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INS/GNSS integrated navigation introduces nonlinearity
into the system state equation, making the traditional linear
Kalman filter (KF) no longer suited to deal with the non-
linearity involved in the direct filtering [4,11,12].

The extended Kalman filter (EKF) is the commonly used
algorithm for state estimation of a nonlinear system [13–
16]. It is an approximation method, in which nonlinear
system equations are linearized by the Taylor expansion
such that the KF can be applied. However, the first-order
linearization of the state equations causes large error for the
posterior mean and covariance of the state vector, and the
Jacobian matrix may not even exist in some cases [12,13].
The unscented Kalman filter (UKF) is proposed as an
improvement to the EKF [17–21]. It uses a finite number of
sigma points to propagate the probability of state dis-
tribution through nonlinear system dynamics. The UKF can
capture the posterior mean and covariance of the state of
any Gaussian and nonlinear system in third-order accuracy.
It can also avoid the cumbersome evaluation of Jacobian
matrices, making the algorithm easier to implement [19].
Due to these merits, the UKF has received great attention
[6,9,21–25]. However, similar to the EKF, the use of the
standard UKF for system state estimation requires the
accurate priori knowledge on the characteristics of process
and measurement noises. Particularly, the uncertainty in
system noise has a crucial impact on the standard UKF and
may result in the significantly degraded performance [26].
In practice, due to the uncertainties in the dynamic envir-
onment and the limitation of test samples, it is difficult to
accurately describe the noise statistics of inertial instru-
ments and GNSS receivers, leading to sub-optimal or even
divergent navigation solutions. Therefore, it is absolutely
necessary to make full use of the information obtained in
the filtering process for resisting the disturbance of system
noise error on system state estimation.

Adaptive Kalman filtering is a method to resist the
influence on the filtering solution due to inaccurate sta-
tistics of system noise [27–30]. Various adaptive UKFs have
been developed using different scenarios of adaptation.
Cho and Choi presented a sigma-point based receding-
horizon Kalman filter (SPRHKF). This filter improves the
standard UKF by using the receding horizon strategy to
adaptively resist model uncertainty and temporarily
unknown sensor bias [31]. However, due to the use of a
finite impulse response structure, the filtering con-
vergence is poor. Cho and Kim developed an adaptive
fusion filter by combining the UKF and SPRHKF through an
interactive multi-model (IMM) estimator. This filter over-
comes the defects of both the UKF and SPRHKF [32].
However, it causes an expensive computational load,
unable to achieve the real-time performance. Wang pre-
sented an adaptive-robust UKF (ARUKF) by introducing
adaptive factors into the robust UKF [33]. This filter can
weaken the effect of the uncertainty of the system models
on the Kalman filtering accuracy. However, as the
equivalent weight factors and the adaptive factors are
determined empirically, the ARUKF cannot be adapted to
the changing conditions.

Studies were also reported focusing on online estima-
tion of system noise statistics rather than correcting them
in the filtering process. These studies can be classified into

four categories [27,34]: the Bayesian, maximum likelihood,
covariance matching and correlation methods. The Baye-
sian and maximum likelihood methods require intensive
computations and both are based on the assumption that
the dynamic error is time-invariant, thus unsuitable for
INS/GNSS integration [26,35]. The correlation method is
common for estimation in time series analysis. This
method correlates system output either directly or after a
known linear operation. However, it is mainly suitable for
a linear system with constant coefficients [36,37], and
cannot be used for a nonlinear filter.

The covariance matching is an adaptive technique to
estimate the covariances of process and measurement
noises at every sampling instant by keeping the elements
of innovation covariance or residual covariance consistent
with their theoretical values [38,39]. Using the historical
data of state prediction and state estimation, the sample
covariances of residual and innovation sequences are
computed cumulatively based on the data either in the
entire history or in a moving time window. Process noise
covariance and measurement noise covariance are then
estimated from the obtained sample covariances. The
covariance matching technique is intuitive and can be
extended to the UKF to improve the performance of state
estimation in the presence of biased priori noise statistics.
This improvement can be achieved at a modest computa-
tional cost by adopting the limited memory procedure,
making the covariance matching technique suitable for the
purpose of real-time computation [27].

This paper presents a new covariance matching based
adaptive unscented Kalman filter (CMAUKF) for INS/GNSS
integrated navigation system. On the basis of the covariance
matching technique, a noise statistic estimator is designed
to online update the covariance matrices of process and
measurement noises, and subsequently feed them back to
the standard UKF to compensate the priori knowledge of
noise distribution in INS and GNSS. The proposed method
enhances the adaptive capability of the standard UKF for
active state and parameter estimations. The performance of
the INS/GNSS integrated system designed using the pro-
posed CMAUKF was verified through simulations and prac-
tical experiments.

2. Standard UKF

In order to show the improvement of the proposed
method over the standard UKF clearly, let us briefly review
the concept of the standard UKF at first.

Consider the following nonlinear discrete stochastic
system

Xk ¼ f ðXk�1Þþwk

Zk ¼HkXkþvk

(
ð1Þ

where XkARnis the state vector at discrete time k, ZkARm

is the measurement vector, wkARnand vkARm are the
additive process noise and measurement noise, the non-
linear function f ðU Þ describes the process model, and Hk is
the measurement matrix.
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