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a b s t r a c t

In this study, a hollow cylindrical tube with a coating layer on its inner wall was considered. The thermal
resistance network method was employed to solve the heat conduction in the tube. Unknown heat flux
on the inner wall of the tube was estimated from measured temperature on the outer wall of the tube by
the recursive input estimation algorithm consisting of the Kalman filter and real-time least squares.
Assuming various operating conditions, the performance of the model developed in this study was
evaluated.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Heating of a tube can induce some adverse effects on system
performance. Especially, combustion of a propellant is a major fac-
tor for melt, crack, erosion, and wear of the tubes at high pressures
and temperatures. Therefore, it is important to know temperature
distribution in the tube wall. If all boundary conditions are speci-
fied, then the temperature distribution in the tube wall can be
obtained by solving the direct heat conduction problem (DHCP).
However, if the measurement of physical parameters such as tem-
perature and heat flux on one of the boundaries of a system is not
possible as in the case of propellant combustion in a tube, then the
system consisting of the tube cannot be analyzed by utilizing mod-
els to solve the direct heat conduction problems. Instead, estimat-
ing unknown temperature and heat flux on one boundary of the
system from known conditions on other boundaries of the system
can be performed by solving the inverse heat conduction problem
(IHCP).

Analytical or numerical studies have been conducted to solve
the inverse heat conduction problems. Analytic solutions were
derived by using the integral or Laplace transform technique
[1–5]. The analytic solutions are very efficient in the view of com-
putation and are of fundamental importance for investigating basic
properties, but are limited to simple geometries. Numerical

methods including the sequential estimation technique were
developed [6–9]. The conjugated gradient method was shown to
be a straightforward and powerful iterative technique for solving
linear and nonlinear inverse problems of parameter estimation
[10–14]. Due to the necessity to estimate the history of unknown
properties in real time in engineering applications, the recursive
input estimation algorithm of digital estimation theory was pro-
posed based on the concept of the Kalman filter technique and
the least-squares estimation of recursive processing [15–18]. The
Kalman filter is a set of mathematical equations providing an effi-
cient computational solution of the least-squares method. The
Kalman filter technique is simple and efficient, takes explicit mea-
surement uncertainty incrementally, and can consider a priori
information. In addition, if the physical system can be modeled,
the Kalman filter and recursive least-squares algorithm is efficient
for solving the problems with complex geometries.

The system modeling is required for the inverse heat conduc-
tion analysis. In previous studies, the system modeling was con-
ducted using the finite element method [19–22]. The finite
element method expresses approximate functions from unknown
variables and determines small element values using the weighted
residual method. The finite element method is suitable for solving
problems with complex boundaries, but has disadvantage that
numerical cost is high because of large amount of computation.
In the meantime, the finite differential method expresses deriva-
tive terms using Taylor series and thus has advantage that numer-
ical cost is relatively low. Therefore, in an effort to reduce the
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amount of computation, the thermal resistance network method,
which is based on the energy balance for control volumes, was
used in heat transfer analysis [23,24].

In this study, a numerical model was developed to predict
unknown heat flux on the inner wall of a tube from known temper-
ature on the outer wall of the tube. The thermal resistance network
method was employed to solve heat conduction in the tube. Using
the recursive input estimation algorithm consisting of the Kalman
filter and the real-time least squares, the unknown heat flux was
estimated. Then, the validity of the model was evaluated by assum-
ing various operating conditions.

2. Model description

2.1. Multi-layered tube problem

Fig. 1 shows a schematic of the cross-section of a hollow
cylindrical tube consisting of chrome layer and steel layer, that
is, the inner surface of the steel tube was considered to be coated
with a thin chrome layer to prevent erosion and wear. The outer
wall of the steel tube was presumed to be exposed to the ambi-
ent air. It was assumed that the outer wall temperature was
given whereas the heat flux on the inner wall of the tube was
unknown. Heat was assumed to be transferred mostly in the
radial direction and the heat flux was considered to change with
time. Therefore, the following conditions were assumed to sim-
plify the problem.

� One-dimensional, axi-symmetric, and transient heat
conduction.

� Constant properties (density, thermal conductivity, specific
heat).
� Negligible contact resistance between chrome layer and steel

layer.
� Constant convectional heat transfer coefficient outside the tube.
� Uniform heat flux on the inner wall of the tube.

Based on these assumptions, the governing equations, boundary
conditions, and an initial condition were expressed as follows.

� Governing equations:
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� Boundary conditions:
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� Initial condition:

Tðr; tÞ ¼ T0; t ¼ 0; ri 6 r 6 ro ð6Þ

Nomenclature

A surface area, m2

B sensitivity matrix
[C] capacitance matrix
Cp specific heat, J/kg K
E total element number
{F} thermal load vector
h convectional heat transfer coefficient, W/m2 s
H measurement matrix
I identity matrix
k thermal conductivity, W/m K
K Kalman gain
Kb steady-state correction gain
m element number for chrome layer
M sensitivity matrix
[M] conductance matrix
n element number for steel layer
O order of error
P filter’s error covariance matrix
Pb error covariance matrix
q heat flux, W/m2

q̂ estimated input vector, W/m2

Q process noise covariance
r radius, m
R measurement noise covariance
s innovation covariance
t time, s
T temperature, K
T1 ambient temperature, K
T0 initial temperature, K
V element volume, m3

X state vector

�X input estimator
Z observation vector
�Z bias innovation

Greek letters
a thermal diffusivity, m2/s
b impulse duration time, s
c forgetting factor
d time interval between impulses, s
C input matrix
h time-stepping parameter
j time (discretized), s
K coefficient matrix
m measurement noise vector
q density, kg/m3

r standard deviation
U state transition matrix
x process noise vector

Superscripts
n time domain

Subscripts
c chrome
C convection
H heat flux
i inner
l interface between chrome and steel layers
N element number
o outer
s steel
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