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Abstract: Nonlinear Bayesian filtering has been utilized in numerous fields and applications.
One of the most popular class of Bayesian algorithms is Particle Filters. Their main benefit is
the ability to estimate complex posterior density of the state space in nonlinear models. This
paper presents the application of particle filtering to the problem of parameter estimation and
calibration of a nonlinear power system model. The parameters of interest for this estimation
problem are those of a turbine governor model. The results are compared to the performance
of a heuristic method. Estimation results have been validated against real-world measurement
data collected from staged tests at a Greek power plant.
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1. INTRODUCTION

Mathematical modeling and parameter estimation of elec-
trical power systems are of the great importance for power
system operators. Model uncertainties and deviations from
reality deeply affect the ability of operators to predict large
blackouts Kosterev and Davies (2010). Speed governors
play a major role in power system security and dynamic
performance. They are responsible for primary frequency
control in the power grid.

Heuristic algorithms to identify of the steam turbine speed
governor model parameters have been successful Tao et al.
(2012), Stefopoulos et al. (2005). In addition, these algo-
rithms have been used to solve other estimation problems
in power systems Lee and El-Sharkawi (2008). The non-
linear recursive least squares method has been applied to
estimate parameter values optimizing the measurement
and simulation difference in voltage and current through
time Pourbeik (2009). Extended Kalman filtering was suc-
cessfully applied for generator parameter estimation from
real measurements in Huang et al. (2013).

The application of particle filters in power systems has
been recently investigated for dynamic state estimation
of a synchronous machine Zhou et al. (2015). Due to its
non-requiring assumptions about the state-space model or
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the state distributions, there is great potential to exploit
Bayesian filtering approach for parameter identification
and model validation.

There are technical issues related to identification prob-
lems in power systems. First, there is a lack of measure-
ment data due to several reasons. Experimental testing
is limited, as it requires the switching of components or
part of the network, which is costly. From the other hand,
confidentiality issues are always present, so an operator
may be able to provide measurements, but not to provide
the model, or vice versa. Second, even when the model and
measurements are provided, there is always ambiguity and
uncertainty in these data. Some details about the network
are not documented properly or are a trade secret.In ad-
dition, time-series data may contain different number of
samples and usually has to be processed before estimation
algorithms can be applied.

The contribution of this paper consists in evaluating meth-
ods from different frameworks - the Bayesian framework
(Particle Filter (PF)) and heuristic optimization (Particle
Swarm Optimization (PSO)) in combination with naive
(gradient descent) or simplex search (Nelder-Mead (NM)
method) using real measurements from staged tests in a
Greek power plant.

The remainder of this article is structured as follows.
Section 2 describes the algorithms applied for parameter
estimation and the turbine speed governor model in the
Greek power plant. Numerical tests and simulation results
are shown in Section 3, and further discussed in Section 4.
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Finally, conclusions were drawn and future work is out-
lined in Section 5.

2. MODELING AND METHODOLOGY

The Greek power plant which will be used in this pa-
per was not modeled for dynamic simulation before this
study and relatively little information was available about
the dynamic characteristics of the equipment. Complete
modeling of the plant has been carried out using Model-
ica Fritzson (2011), in Bogodorova et al. (2013), Qi (2014),
however, in this paper only the turbine-governor system is
described in detail.

2.1 The dynamic model of the turbine-governor

The model TG Type I, Milano (2005), was used to rep-
resent the dynamics of the real turbine governor in the
Greek power plant, as follows
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where
wres - reference speed [p.ul;
R - droop [p.u.];

DPmaz - Maximum turbine output [p.u.];
Pmin - Minimum turbine output [p.u.|;
T, - governor time constant [s];

T, - servo time constant [s];

T3 - transient gain time constant [s];
T4 - power fraction time constant [s];
T5 - reheat time constant [s];

This model was chosen because of its simplicity and ability
to reproduce the main dynamics of the governor and steam
turbine. It is a very simple approximation of the real
dynamics, which brings deviation of the model behavior
from the real system response.

A droop governor response is used in turbine generator
controls to help maintaining an electrical grid at constant
frequency. If the grid frequency drops below rated fre-
quency, the turbine will be commanded to increase its
power output. If the grid frequency increases above the
rated frequency, the turbine will be commanded to reduce
its power output. In other words the primary frequency re-
sponse is aimed to automatically change of the gas turbine
load to compensate for change in grid frequency.

2.2 Bayesian filtering concept

Bayesian filtering is one of the most popular methods to
solve inverse problems. It recursively estimates a belief
in the unmeasured states/parameters {z, }, Kramer and
Sorenson (1988), by using all available information about
the system’s structure

dx
) (7
yn = h(l‘(tn),tn, U’ﬂ)7 (8)
where o0,- measurement noise; and y1., = {y;,4 = 1.n}
are measurements. Assuming that the initial probability
distribution function (pdf) (prior), p(zolyo) = p(zo), is
given, one has to construct the posterior pdf, p(z,|y1.n).
This process is recursive and may be performed in two
stages: prediction and update.

At the prediction step the Chapman-Kolmogorov equa-
tion, Doucet et al. (2001), is applied:

p(xn|y1:n—1) - /p(xn|xn—1)p(xn—l‘yl:n—l)dxn—l (9)

At the update step when the measurements y,, have been
received, the Bayes’ rule is exploited to update the prior
to the posterior pdf given the measurements y,,:
_ p(yn|xn)p($n‘yln—l)

P\Tn|Y1:n) =
( "| ”) p(yn|y1:n71)
The normalizing constant can be evaluated using:

P(nlytin_t) = / Pl )P(@nlyin)den (1)

The likelihood function p(yg|zk) is represented trough
measurement equation, where the properties of the mea-
surement noise are known.

(10)

In Bayesian inference, all of uncertainties are treated as
random variables. Bayesian filtering is optimal in a sense
that it seeks the posterior distribution which uses all of
available information expressed by probabilities (assuming
they are quantitatively correct). However, as time pro-
ceeds, one needs infinite computing power and unlimited
memory to calculate the optimal solution, except in some
special cases (e.g. linear Gaussian or conjugate family
cases). Hence, in general, we can only seek a suboptimal
or locally optimal solution Chen (2003).

2.8 Particle Filter

The particle filter is an nonparametric implementation
of the Bayes filter. The particle filters approximate the
posterior pdf by a finite number of parameters. The key
idea of the particle filter is to represent the posterior
pdf p(zp+1lyn) by a set of random samples drawn from
the posterior. Instead of representing the distribution in
parametric form (exponential function for a normal distri-
bution), particle filters represent a distribution by a set of
samples drawn from this distribution. Such a representa-
tion is approximate, but it is nonparametric, and therefore
can represent a much broader space of distributions than,
for example, Gaussians. Another advantage of the sam-
ple based representation is its ability to model nonlinear
transformations of random variables, as shown in Fig. 1.
The samples of a posterior distribution are called particles
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