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a b s t r a c t

The stability of reset control systems has been mainly studied for the feedback interconnection of reset
compensators with linear time-invariant systems. This work gives a stability analysis of reset compen-
sators in feedback interconnection with passive nonlinear systems. The results are based on the passivity
approach to L2-stability for feedback systems with exogenous inputs, and the fact that a reset compen-
sator will be passive if its base compensator is passive. Several examples of full and partial reset compen-
sations are analyzed, and a detailed case study of an in-line pH control system is given.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Reset control system design was initiated fifty years ago with
thework of Clegg [1],who introduced a nonlinear integral feedback
controller based on a reset action of the integrator, the so-called
Clegg integrator. The reset action amounts to setting the integrator
output equal to zero whenever its input is zero. In this way a faster
system response without excessive overshoot may be expected,
thus possibly overcoming a basic limitation of the standard linear
integral feedback. This has spurred the development of several
other nonlinear compensators, all based on describing function
analysis. Furthermore, in a series of papers by Horowitz and co-
workers [2,3] reset control systems have been advanced by in-
troducing the first-order reset element (FORE).
One of the main drawbacks of reset compensators is that the

stability of the feedback system is not always guaranteed by
the stability of the underlying linear time-invariant (LTI) system
without reset action. In fact it is well known, and easily illustrated,
that the reset action can destabilize a stable LTI feedback system.
Recently, the problem for linear reset control systems has been
successfully addressed in [4,5] for general reset compensators,
allowing full or partial state reset. As a result stability of the reset
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control system can be checked by the (strictly) positive realness of
a certain transfer matrix Hβ , referred to as the Hβ-condition.
Reset control systems can be also regarded as a special case of

hybrid systems, or as systems with impulsive motion. From this
perspective, the recent work [6] addressed the stability problem
of these types of systems with the goal of analyzing the stability of
switching between LTI controllers. Furthermore, the Hβ-condition
has been relaxed in [7] to obtain a less restrictive Lyapunov
stability condition. The papers [8,9] derive conditions based on the
reset times that can be used both for stable and unstable linear
systems.
Regarding theL2-stability of reset systems with inputs, a num-

ber of papers have appeared that give results for particular cases
of reset compensators and/or inputs. The work [7] approaches the
problem for compensators in which its output has the same sign
as its input, and the zero reference case is considered. In addition,
in [10] L2-stability conditions for the case of nonzero references
are given. The conservatism given by Hβ-condition is improved for
these kinds of systems.
On the other hand, dissipative systems theory was developed

in [11], where the concept of a passive system, originating from
electric circuit theory and mechanical systems, was extended to
abstract systems. A main theorem in this context is the fact that
the feedback interconnection of two passive nonlinear systems is
again a passive system. Passivity techniques have been shown to
be a powerful tool for nonlinear control, see e.g. [12]. Dissipative
systems theory has been developed for hybrid systems in [13],
where notions such as supply rate have been extended to the
hybrid case. We also refer to [14–17] for work on passivity of
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Fig. 1. Reset controller R applied to a LTI plant.

hybrid systems. In spite of the fact that a single-input single-output
approach to passive systems theory will not be sufficient for more
general hybrid systems, this paper will show how several passivity
properties can be obtained for reset compensators. In [13], this
kind of impulsive systems are referred to as input-dependent
impulsive dynamical systems.
The goals of this work are: (a) to obtain stability conditions that

are applicable to feedback interconnections of linear compensators
with reset action and nonlinear plants; (b) to find passive reset
compensators that can be used in passive control techniques.
Passivity conditions for stabilitywill be developed,which are easily
checked on the linear compensator without reset action.
The structure of the work is the following. In Section 2, a de-

scription of the problemsetup is given and somebasic results about
passivity theory are recalled. Section 3 gives themain results about
the passivity properties of reset compensator, which are used to
show L2-stability with respect to reference and perturbation in-
puts. In Section 4, an application to an industrial nonlinear plant is
developed.

2. Preliminaries and problem setup

This work approaches the stability problem of reset control
systems with inputs using general passivity theory. We consider
the feedback system given by Fig. 1, where w and d are the
reference and disturbance inputs, respectively. R is a single-input
single-output (SISO) reset compensator to be defined later on, and
P is a single-input single-output (SISO) plant. The setL2 consists of
all measurable functions f (·) : R+ → R such that

∫
∞

0 |f (t)|
2dt <

∞, being the L2-norm ‖ · ‖ : L2 → R+ defined by ‖f ‖ =(∫
∞

0 |f (t)|
2dt
) 1
2 .

The feedback interconnection in system (Fig. 1) is given simply
by

e(t) = w(t)− y(t), u(t) = v(t)+ d(t). (1)

The feedback system of Fig. 1 is called L2-stable (with respect
to inputs w and d) if for every input signals w ∈ L2 and d ∈ L2
the outputs u ∈ L2 and y ∈ L2. In addition, it is finite-gain stable
if there exists a positive constant γ > 0 such that ‖y‖2 + ‖u‖2 ≤
γ (‖w‖2 + ‖d‖2).
The plant P is represented by the state-space model

P :
{
ẋp = f (xp, u), u ∈ R
y = g(xp, u), y ∈ R (2)

where np is the dimension of the state xp, f : Rnp × R → Rnp
is locally Lipschitz, g : Rnp × R → R is continuous, f (0, 0) =
0, and g(0, 0) = 0. In addition, following the framework given
in [13], the dynamics of the reset compensator is described by
three elements: (a) a continuous-time dynamical equation, (b)
a difference equation, and (c) a reset law. During time intervals

in which the reset law is not applied, the system evolves in a
continuous fashion; otherwise, when the resetting law is applied,
the system undergoes a jump. We will throughout consider reset
compensators R that consist of an LTI compensator (the so-called
base linear compensator) together with a reset action, given by the
following impulsive differential equation (IDE):

R :

ẋr = Arxr + Bre, e 6= 0
x+r = Aρxr , e = 0
u = Crxr + Dre

(3)

where nr is the dimension of the state xr , Aρ is a diagonal matrix
with diagonal elements equal to zero for the state components to
be reset, and equal to one for the rest of the compensator states, nρ
is defined as the dimension of the reset subspace, and nρ is defined
as the dimension of the non-reset subspace (nρ + nρ = nr ). When
Aρ = 0, Rwill be referred to as full reset compensator; otherwise, it
will be referred to as partial reset compensator.
The first equation in (3) describes the continuous compensator

dynamics at the non-reset time instants,while the second equation
gives the reset operation as a jump of the compensator state at the
reset instants. Note that reset time instants occur when the com-
pensator input is zero. The base compensator is simply obtained
by omitting the reset actions in (3), and thus has the transfer func-
tion Rbl(s) = Cr(sI−Ar)−1Br+Dr . Henceforth, whenever a transfer
function is used to describe a reset compensator, thismeans that its
base linear compensator has this transfer function. Furthermore,
we will use the notations x+r or xr(t

+) for the value xr(t + τ)with
τ → 0+.
Impulsive systems such as (3) are a special case of hybrid

systems, for which it is well that phenomena like Zeno behavior
and beating may occur [13]. To avoid these phenomena, we will
assume throughout this paper that the solutions to (3) are time
regularized (see for example [7] and the references therein), which
means that the reset law is switched off for a time interval of length
1m > 0 after each reset time. Thus formally speaking we consider
the following reset system

R :

1̇ = 1, ẋr = Arxr + Bre, e 6= 0 or1 < 1m
1+ = 0, x+r = Aρxr , e = 0 and1 ≥ 1m
u = Crxr + Dre

(4)

with zero initial conditions: 1(0) = 0, xr(0) = 0. As a conse-
quence of time regularization there will exist for any input e only
a finite number of reset times on any finite time interval, hence ex-
cluding Zeno behavior. Furthermore, on the infinite time interval
[t0,∞) there will exists a countable set {t1, t2, . . . , tk, . . .} where
tk+1 − tk ≥ 1m for all k = 1, 2, . . ., and in addition the constant
1m does not depend on the input e.
In contrast to the works [7] and [18], where the reset action is

active when input and output have a different sign, the original
definition of reset according to [1,3,2,5] has been used here.
Note that the definition of Clegg integrator proposed in [18] is
equivalent to the original in [1] in the case of zero initial condition.
In addition, although the definition given in [18] has advantages in
some particular cases, it cannot be applied to partial reset systems.
This is the main reason why the original definition has been used
in this work.
A system H : L2,e → L2,e, with input u and output y = Hu is

said to be passive if there exists a constant β ≤ 0 such that∫ T

0
u>(t)y(t)dt ≥ β, ∀T ≥ 0, ∀u ∈ L2. (5)

If there are constants δ ≥ 0 and ε ≥ 0 such that∫ T

0
u>(t)y(t)dt ≥ β + δ

∫ T

0
u>(t)u(t)dt + ε

∫ T

0
y>(t)y(t)dt,(6)
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