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a b s t r a c t

In this work a new approach for a fully automated calibration of nonlinear PID controllers and
feedforward maps is introduced. Controller design poses a particularly challenging task in the
application to internal combustion engines due to the nonlinear controller structure, which is usually
prescribed by the manufacturer of the engine control unit (ECU). A dynamic local model network is used
to represent the actual physical process as its architecture can beneficially be adopted for scheduling of
the nonlinear controller parameters. The presented calibration technique uses a genetic algorithm to
calibrate the nonlinear PID controller and a static model inversion to determine the feedforward map.
Closed-loop stability is taken into account by incorporating a Lyapunov function. Finally, an example
demonstrates the effectiveness of the proposed method.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In engine control units (ECUs) usually discrete-time, nonlinear
PID controllers with a specific structure are used for many control
tasks such as the actuator position in a variable-turbine geometry
(VTG) turbocharger for intake manifold pressure control. Basically,
the controller gains are retrieved from nonlinear maps, which dep-
end on engine load and speed. Further, there are additional para-
meters to distinguish between small and large control errors. Usually
calibration engineers determine the parameters and maps within the
ECU structure manually with testbed runs, test drives and a lot of
expert knowledge. Thus, as it will be demonstrated in the last
section, a model-based calibration method will help to increase the
efficiency of the calibration workflow whenever conflictive objec-
tives, such as stability and performance, are considered.

In the setting of internal combustion engines, PID control has
become increasingly complex due to the large amount of degrees of
freedom in calibration. Current production ECUs usually implement
fixed PID controller structures where several thousand parameter
values, parameter maps and look-up tables describe gains, time

delays or correction factors. Therefore, under the condition that the
controller structure is prescribed by the ECU, the ambition of the
new calibration approach is that it can be implemented into the
established workflow straightaway while exploiting the already
existing knowledge most efficiently.

Usual approaches from linear theory are insufficient because of
the mutual influence of numerous parameters. Merely in combi-
nation with lots of expert knowledge the calibration task can be
tackled sufficiently at the moment. In this context, the presented
method achieves a base calibration by optimization considering
stability as well as performance at the same time.

In the future, control strategies will most likely changeover to
model-predictive control (MPC). Clearly, this is a very promising
and innovative approach, which has already been applied to the
calibration of internal combustion engines, e.g. Ferreau, Ortner,
Langthaler, del Re, and Diehl (2007), El Hadef (2013), and Zhao
et al. (2014). Control performance as well as disturbance rejection
will be improved by using MPC as compared to (even nonlinear)
PID control. Nevertheless, MPC represents a complex approach in
the automotive technology, which also requires suitable models
and stability criteria. Further, to establish MPC as a standard met-
hod in ECUs not only scientific progress has to be made but also
the implementation of new standard operating procedures, the
buildup of expert knowledge of calibration engineers as well as an
ECU hardware suitable for serial production is needed. Thus, PID
control still is the current industrial standard. It fits very well in
the well-established technology development processes, allows
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for division of the control task into smaller subproblems (i.e.
modularity) and provides the opportunity for locally recalibrating
a controller in a particular operating region with a limited impact
on the global behavior (Cieslar, 2013).

For an integrated model-based controller design scheme it is
reasonable to use local model networks (LMN), which approximate
even strongly nonlinear dynamic processes by a network of locally
linear dynamic submodels. Their approximation capabilities allow
for, or at least facilitate, the design of PID controllers for nonlinear
systems. LMN from the family of multiple-model approaches (e.g.
Murray-Smith & Johansen, 1997) are a qualified approach because
of their transparent structure and the possibility to incorporate
prior (physical) knowledge (Jakubek & Hametner, 2009). LMN
interpolate between different local models, each valid in a certain
operating regime. Each of these operating regimes represents a
simple model, e.g. a linear regression model, describing the local
dynamics.

This paper introduces a method for calibration of nonlinear PID
controllers in ECUs using LMN. In this context three main tasks
have to be solved:

� Automatically determine feedforward maps. In ECUs there are
two-dimensional feedforward maps, which usually depend on
load and speed.

� Automatically determine nonlinear PID maps. The gains of PID
controllers (usually P, I, D and T1 of the DT1-Part) are two-
dimensional maps, which, very much like the feedforward
maps, usually depend on load and speed.

� Parameterize error signal adaption. In ECU PID control scheduling
of the controller parameters is usually not only carried out along
load and speed. In addition to these quite obvious scheduling
variables, the control error itself is often used as a means for
parameter scheduling. This approach is commonly understood
as error signal adaption. It is noteworthy, that this introduces an
additional nonlinearity into the closed-loop system.

The feedforward map is determined by a point-wise static inver-
sion of the local model network. To determine the nonlinear PIDmaps,
a multi-objective genetic algorithm (multiGA) is used, which considers
closed-loop stability and performance. For closed-loop stability a
Lyapunov criterion from Takagi–Sugeno (TS) fuzzy models is adopted
and extended by a decay rate to get a scalar stability measure, which is
required for the multiGA (Hametner, Mayr, Kozek, & Jakubek, 2013).
The adoption of the Lyapunov stability criterion is justified, because
similarities between TS fuzzy models and LMN exist, if the number of
if–then rules in the TS fuzzy model equals the number of local models
in an LMN (Gregorcic & Lightbody, 2008). The stability criterion results
in linear matrix inequalities (LMIs), which are solved by a specialized
solver, e.g. Nemirovskii and Gahinet (1994). However, a state-space

system of the closed-loop (LMN and PID controller) is introduced,
because Lyapunov stability criteria require a state-space notation. For
an efficient handling, the presented state-space system strictly dis-
criminates between parameters of the system and the controller; there
is no matrix, which includes parameters of both the LMN and the
controller. The performance of the control system is determined by
simulating the closed-loop with proper input/reference signals. The
performance is measured by the summation of the quadratic offset of
the output from an expected output in each time-step. Parameters of
the error signal adaption are determined by a performance criterion
similar to the nonlinear PID maps. The difference lies in the perfor-
mance sequence, which is designed with stronger transients to obtain
larger control errors.

Well known model-based, characteristics-based or rule-based
methods for the autotuning of PID controllers (Åström & Hägglund,
2006; Leva, Cox, & Ruano, 2002) mostly account for simple linear
process models of low order only. Such methods could be applied to
each local linear model in the LMN individually, but the stability
and performance of the overall closed-loop would remain uncon-
sidered. To obtain good initial conditions for the optimization, the
local application of such an autotuning method is reasonable.

This paper is organized as follows. First, the nonlinear PID
controller of ECUs is investigated in Section 2. The architecture of
local model networks is described in Section 3. Subsequently, the
state-space model of the closed-loop is introduced in Section 4.
Section 5 presents the methodology to design nonlinear ECU PID
controllers for turbochargers. Next, in Section 6 the effectiveness of the
proposed method is shown by means of an example, where the VTG
position of a turbocharger is used for controlling the intake manifold
pressure. Finally, the paper is concluded by some remarks in Section 7.

2. Architecture of PID controllers used in ECUs

This section describes the architecture as well as the control
algorithm of common PID controllers in ECUs. Fig. 1 gives an
overview of the architecture, which employs a PID controller with
a DT1-Part. The reference map, the controller gains as well as the
feedforward map to determine the reference signal w, the actuat-
ing variable ufb and the feedforward signal uff respectively, depend
on engine load q (in mg/stroke) and speed n (in rpm). In contrast
to the feedforward and the controller gain maps, the reference
map is largely determined from emission limits beforehand and is
usually prescribed for calibration engineers.

In addition to the above control architecture ECUs employ error
signal adaption, which is applied to the control error e within each
controller part individually and results in a nonlinearly modified
error signal. For example, the adaption in the P-Part leading to the
modified control error ep is shown in Fig. 2. All three gradients

Fig. 1. Scheme of a nonlinear PID controller used in ECUs.
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