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a  b  s  t  r  a  c  t

The  stabilizing  parameter  sets  and  the  guaranteed  gain-margin  (GM)  and  phase-margin  (PM)  regions
of  proportional-integral-derivative  (PID)  controllers  for  a class  of  processes  with  time-delay  are  dis-
cussed  in  the  paper.  The  admissible  range  of stabilizing  proportional-gain  is  first  derived  by a  version
of  Hermite–Biehler  Theorem  and  the  evaluation  of  some  properties  of  the  functions  involved  in  the
closed-loop  characteristic  equation.  Then,  the  stabilizing  region  in  integral-derivative  plane,  for  a  fixed
proportional-gain,  is  drawn  and  identified  directly  in  terms  of  a graphical  stability  criterion  applicable  to
time-delay  systems.  Further,  in  the  stabilizing  region,  the  gain-margin  and  phase-margin  specifications
are  considered  using  the  same  strategy  as  drawing  the  stability  boundary  lines,  based  on the  technique
of  gain-phase  margin  tester  (GPMT).  Illustrating  examples  are  followed  in  each  design step  to  show  the
effectiveness  of  the  method.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

PID controllers, which pertain to the classical control theory,
are widely applied in industrial process control field, although the
modern and post-modern control theories have emerged for a few
decades. This is due to the fact that PID controller is simple in struc-
ture and it is possible to achieve a satisfactory control effect and
acceptable robustness [1]. On the other hand, time-delay is a com-
mon  phenomenon in many processes. The existence of time-delay
in a control loop is a source of instability and performance deteri-
oration [2],  because it leads to a characteristic quasi-polynomial of
the closed-loop with infinite number of roots [3].

The tuning methods of PID controllers have been studied inten-
sively in the past, such as the well-known Ziegler–Nichols tuning
rule [4] for the first order plus time-delay transfer functions, which
models a wide class of processes possessing an S-shape reaction
curve in step responses. Another research line for the design of
PID controllers is to determine the stabilizing parameter set of PID
controller, this set was first shown in [5] as convex polygons for
delay-free systems by an extension of the Hermite–Biehler theo-
rem presented by Pontryagin [6].  Then, the approach was  applied to
first-order plus time-delay systems and the convex polygon prop-
erty was extended to this case [7].  By using the Nyquist stability
criterion, the same results as those in [7] were obtained which
gave an alternative simple derivation [8].  The technique employed
in [7] was also generalized to the second-order-integrating
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processes with time-delay [9].  For the second-order time-delay
plants [10] and the nth-order all pole time-delay plants [11], a
graphical approach was applied to draw the stabilizing regions of
PID controllers, exhibiting a simple characterization in determin-
ing the stabilizing parameters of PID controllers. The determination
of stabilizing regions for second-order time-delay plants with one
zero was considered in [12] in both process and controller param-
eter plane via the evaluation of some properties of the functions
relating to the plant. In [13], a complete characterization of sta-
bilizing regions of a general second-order quasi-polynomial with
a single delay was derived using the root location approach. The
authors in [14] expanded the Hermite–Biehler method to arbitrary
linear delay systems, and the stabilizing regions were obtained
by searching the set of controller parameters. Since then, some
research works have focused on the stabilization of arbitrary
delay systems using PID controllers [15–18].  The D-decomposition
approach was  extended to this case in a compact way  in [15],
and the entire set of stabilizing PID controller parameters was
computed for both retarded and neutral systems. In [16,17],  by
employing an extended Hermite–Biehler Theorem, the results
on the design of PID (P, PI, PID separately in [17]) controllers
were obtained via a procedure of linear programming, and the
computational characterizations are analogous to the Youla param-
eterization of all stabilizing controllers for rational plants [17].
Based on the inverse Nyquist plot, the computation of stabilizing
PID gain regions was carried out in [18].

The gain and phase margins design of control systems is an old
topic that was  first introduced in [19] for SISO systems. In [20],
PID controller designed to satisfy gain and phase margins was  pre-
sented. Recent achievements on the issue can be found in [21–26]
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and references therein, aiming at giving new or improved design
procedure.

In the present work, we first consider a class of time-delay
plants with zeros to determine the stabilizing parameter set of
PID controllers. In author’s previous works [10,11], the zeros in the
transfer function of the plant were not included for the simplic-
ity of derivation. The necessary conditions are described explicitly
for the proportional-gain interval potentially providing a stable
region in the plane of integral and derivative gains using a ver-
sion of Hermite–Biehler Theorem. Based on a graphical stability
criterion applicable to quasi-polynomial, the stabilizing region
in integral-derivative plane is drawn and identified for a fixed
proportional-gain in the stabilizing interval. In addition, we  fur-
ther discuss, in the stabilizing region, the classical performances of
the gain-margin and phase-margin by the same strategy as stability
analysis. The graphical tuning presented in this paper is direct and
flexible in the selection of PID parameters.

The rest of the paper is organized as follows. In Section 2,
the problem statement and some properties of the plant are pro-
vided. Then, Section 3 proves the explicit stabilizing interval of
proportional-gain, and Section 4 discusses the stabilizing region
in the plane of integral and derivative gains. In Section 5, the
traditional performances of gain-margin and phase-margin are
considered in the stabilizing region. Finally, concluding remarks
are given in Section 6.

2. Problem formulation and preliminaries

Consider the general structure of SISO LTI unity feedback with
a so-called GPMT [27] as shown in Fig. 1, where G(s) and C(s) are
the transfer functions of the process and controller, respectively,
which are given by

G(s) =
k
∏m

j=1(�js + 1)

s�
∏n

i=1(Tis + 1)
e−Ls, � = 0, 1, 2 (1)

C(s) = Ki + Kps + Kds2

s
(2)

where k > 0 is the gain of the process, �j, Ti the time constants, L
the time-delay, m,  n + � the orders of the numerator and denom-
inator of G(s), � the number of the integrators, representing the
type of the process, Ki, Kp and Kd stand for the integral, propor-
tional and derivative, respectively, gains of PID controller, and Ae−jϕ

represents the GPMT, which provides information on plotting the
boundary lines of constant gain-margin and phase-margin in the
parameter plane of PID controller, corresponding to the following
three cases: (a) Setting A = 1, one obtains the boundary lines for
a given phase-margin ϕ. (b) Setting ϕ = 0, the boundary lines for
a desired gain-margin A. And (c) To find the stabilizing boundary
lines, one needs to set A = 1 and ϕ = 0 simultaneously. In practical
control systems, the block of GPMT does not exist, it is only used for
the design of PID controllers with desired gain and phase margins.

The problem of interest in this paper is to determine the
three gain parameters of PID controller given in (2) such that the
closed-loop system depicted in Fig. 1 with A = 1 and ϕ = 0 is stable.
Furthermore, with the stabilizing ranges of the gains of PID con-
troller being known, one tunes the parameters of PID controller to

jAe ϕ− ( )C s ( )G sR(s) Y(s)

GPMT PID PLANT

Fig. 1. General structure of unity feedback.

satisfy the gain-margin or phase-margin performance by setting
ϕ = 0 or A = 1, respectively.

In the following, the stability problem of the closed-loop in Fig. 1
for PID controlled time-delay system is first considered. The closed-
loop characteristic quasi-polynomial is given by

D1(s) = s�+1
n∏

i=1

(Tis + 1) + k(Ki + Kps + Kds2)
m∏

j=1

(�js + 1)e−Ls

Multiplying D1(s) by eLs yields

D(s) = s�+1
n∏

i=1

(Tis + 1)eLs + k(Ki + Kps + Kds2)
m∏

j=1

(�js + 1) (3)

The following two  conditions are necessary for the stability of
D(s) in (3).

Condition 1. A minimal requirement for any control design is that
the delay-free closed-loop system be stable.

Condition 2. It is necessary that D(s) have no more than a bounded
set of zeros in the open right-half plane for stability. This holds if
D(s) has a principal term apqspeqs, where p = n + � + 1 and q = 1 in
(3), it exists if m ≤ n + � − 1, and the coefficient function �p(s) of sp,
where �p(s) = eLs

∏n
i=1Ti, for m < n + � − 1 and �p(s) = eLs

∏n
i=1Ti +

kKd

∏m
j=1�j , for m = n + � − 1, has all the zeros in the open left-half

plane. This happens if one of the following assumptions is satisfied

(A) m < n + � − 1.
(B) m = n + � − 1 and

∣∣kKd

∏m
j=1�j/

∏n
i=1Ti

∣∣ < 1.

Note that Condition 2 is presented by Pontryagin in [6].  The
quasi-polynomial (3) under Assumption (A) is a quasi-polynomial
of retarded type and under Assumption (B) belongs to a class of
quasi-polynomial of neutral type [16].

Now, let us evaluate some expressions involved in (3) that will
be used in the following sections.

Substituting s = jω into (3) yields

D(jω) = (jω)�+1
n∏

i=1

(jTiω + 1)ejLω

+ k(Ki + jKpω − Kdω2)
m∏

j=1

(j�jω + 1) (4)

Multiply both sides of (4) by
∏m

j=1(−j�jω + 1) and let z = Lω,  one
gets

D∗(jz) = (jz/L)�+1
n∏

i=1

(jTiz/L + 1)
∏m

j=1
(−j�jz/L + 1)ejz + k(Ki + jKpz/L − Kdz2/L2)

m∏
j=1

(�2
j z2/L2 + 1)

= (jz/L)�+1(A(z) + jB(z))(C(z) + jD(z))ejz + k(Ki + jKpz/L − Kdz2/L2)E(z)

= (jz/L)�+1[M(z) cos z − N(z) sin z + j(M(z) sin z + N(z) cos z)] + k(Ki + jKpz/L − Kdz2/L2)E(z)

(5)
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