
Particle swarm optimization with cocktail decoding method for hybrid flow
shop scheduling problems with multiprocessor tasks

Fuh-Der Chou n

Department of Industrial Management, Ching Yun University, Jung-Li, Tao Yuan, Taiwan, ROC

a r t i c l e i n f o

Article history:

Received 14 September 2011

Accepted 14 May 2012
Available online 23 May 2012

Keywords:

Multiprocessor task

Hybrid flow shop

Particle swarm optimization

Lower bound

a b s t r a c t

This paper addresses the problem of multiprocessor task-scheduling in a hybrid flow shop (HFS)

problem to minimize the makespan. Due to the complex nature of an HFS problem, it is decomposed

into the following two sequential decision problems: determining the job permutation in stage 1,

followed by a decoding method to assign jobs into each machine in subsequent stages when designing a

heuristic algorithm. The decoding method plays a pivotal role for improving the solution quality of any

algorithm for the HFS problem. However, the majority of existing algorithms ignores the problem and is

only concerned with the first decision problem. This study emphasizes the importance of the decoding

method via a small test, and searches for a number of solid decoding methods that can be incorporated

into the cocktail decoding method. Then, this study develops a particle swarm optimization (PSO)

algorithm that can be combined with the cocktail decoding method. In the PSO, a variety of job

sequences are generated using the PSO procedure in stage 1, and the cocktail decoding method is used

to assign the jobs to machines in sequential stages. Moreover, a modified lower bound is introduced.

Computational results show that the proposed lower bound is competitive, and with the help of the

cocktail decoding method, the proposed PSO, and even the adoption of a standard PSO framework,

significantly outperforms the majority of existing algorithms in terms of quality of solutions, especially

for large problems.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Hybrid flow shop (HFS) problems have recently attracted
considerable attention from researchers. HFS is an extension
model of the flow shop system that relaxes the assumption of
the one-stage-one-machine pattern based on the entire issue that
machines operate in parallel in at least one stage to prevent the
whole system from being blocked (e.g., a breakdown) by a single
machine in many industrial environments. Thus, the HFS problem
has two basic characteristics as follows: (1) a set of n jobs is
sequentially processed in a series of m stages; and (2) at least one
of the stages has mi machines in parallel. Rao (1970) conducted
the early work on HFS scheduling, and variants of HFS problems
with different constraints and criteria have been studied by many
researchers since then. Gupta (1988) considered the two-stage
special case with a single machine in the first stage and two
identical machines in the second stage, and showed that the case
was NP-hard. Brah and Hunsucker (1991) proposed a branch and
bound (B&B) algorithm to minimize the makespan for HFS
problems. Portmann et al. (1998) applied a genetic algorithm

(GA) within a B&B algorithm to further improve the performance
of the B&B algorithm. With the computational complexity of HFS
problems, a number of heuristics and metaheuristic algorithms
have also been developed to obtain good enough solutions in a
short time for medium-to-large problems (Haouari and M’Hallah,
1997; Brah and Loo, 1999; Lin and Liao, 2003; Jin et al., 2006;
Janiak et al., 2007; Alaykiran et al., 2007). The studies mentioned
above focused on the model of the one-job-one-machine pattern,
in which each job is processed on only one machine at a given
time. Ruiz and Vazquez-Rodriguez (2010) conducted a compre-
hensive survey of relevant research on HFS problems from 1970
to 2009, clearly revealing that among the majority of HFS
problems that were concerned with the one-job-one-machine
model, only a few studies discussed multiprocessor tasks where
each job is processed on a number of identical machines simulta-
neously at each stage.

This study focuses on multiprocessor task-scheduling in a HFS
system. The problem can be encountered in a number of industrial
environments, such as berth allocation of container terminals, real-
time machine-vision systems, and work force management. In the
considered problem, a given set of n jobs, each with k tasks, is
processed sequentially from stage 1 to stage k. Each stage consists of
Pmi (i¼1,y,k) identical parallel machines. Each job j is characterized
by pij and sizeij, indicating that the tasks of job j are processed by

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/ijpe

Int. J. Production Economics

0925-5273/$ - see front matter & 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ijpe.2012.05.015

n Tel.: þ886 3 4581196; fax: þ886 3 4683298.

E-mail address: fdchou@tpts7.seed.net.tw

Int. J. Production Economics 141 (2013) 137–145

www.elsevier.com/locate/ijpe
www.elsevier.com/locate/ijpe
dx.doi.org/10.1016/j.ijpe.2012.05.015
dx.doi.org/10.1016/j.ijpe.2012.05.015
dx.doi.org/10.1016/j.ijpe.2012.05.015
mailto:fdchou@tpts7.seed.net.tw
dx.doi.org/10.1016/j.ijpe.2012.05.015


sizeij parallel machines simultaneously for pij time period without
interruption at stage i. Any machine can only process one task at a
time. All jobs and machines are available at time zero, setup times
are negligible, and preemption is not allowed. The problem aims
to minimize the maximum completion time of all jobs, i.e., the
makespan. Using the standard three-field notation, the problem
can be described as follows: FkðPm1,. . .,PmkÞ9sizeij9Cmax.

In literature, several heuristic algorithms have been developed
to solve multiprocessor task HFS problems. Oguz and Ercan
(1997) and Oğuz et al. (2003) examined the multiprocessor task
in a two-stage HFS problem motivated by a computer vision
system. The two studies presented different constructive heuristic
algorithms based on several dispatching rules wherein Oğuz and
Ercan assumed a unit-processing time for all jobs. Ying and Lin
(2009) developed the first simple constructive heuristic algorithm
with a computational complexity of O(n2) to solve a general
FkðPm1,. . .,PmkÞ9sizeij9Cmax problem. Kahraman et al. (2010)
developed a parallel greedy algorithm, which is an effective
stochastic local search algorithm that is easy to implement and
has great potential to provide good solutions, for the HFS problem
with multiprocessor tasks. Their results are competitive com-
pared with the results of Oğuz and Ercan (2005). Lahimer et al.
(2011) developed the climbing depth-bounded adjacent discre-
pancy search (CDADS) based on a limited discrepancy search,
which was effective for both small and large problems.

Recently, metaheuristic algorithms have been developed for
multiprocessor task-scheduling in an HFS system, including
simulated annealing (SA) by Wang et al. (2011), tabu search
(TS) by Oğuz et al. (2004), GA (Sivrikaya-Serifoglu and Ulusoy,
2004; Oğuz and Ercan, 2005) particle swarm optimization (PSO)
algorithm by Tseng and Liao (2008), and ant colony optimization
(ACO) by Ying and Lin (2006). These studies decomposed
the problem into two decision problems, namely, the determina-
tion of job permutation in stage 1 and the assignment of jobs
to each machine in the subsequent stages. For two sub-problems,
the metaheuristic algorithms mentioned above usually follow a
two-phase structure in which different permutations of the jobs
are generated in the first phase, and then a decoding method is
used to assign the jobs to machines for the remaining stages
according to the first come, first served (FCFS) manner (i.e., list
scheduling). Despite the relative popularity of list scheduling for
HFS problems, it still has a significant drawback. Suppose the case
of the processor requirement sizeij of the selected job with an
earlier completion time at the previous stage exceeds the number
of available machines, and thus, the job must be postponed for
processing to satisfy the processor requirement constraint. Con-
sequently, unnecessary idle times in the machines at the current
stage occur and longer makespan is obtained. In addition, Liao
et al. (2006) proposed a non-permutation procedure incorporated
in the GA and TS algorithms and showed that the non-permuta-
tion schedule could be superior to the permutation schedule in a
traditional flow shop, especially for due-date based criteria,
through a comprehensive computational experiment. Therefore,
the optimal solution may not be able to produce if only the list
schedule (LS) is used for subsequent stages when the permuta-
tions of jobs are exhausted for stage 1. For this drawback, Jouglet
et al. (2009) proposed a new memetic algorithm (MA), in which
the permutation of jobs is generated by a GA operator, and then a
constraint programming (CP)-based B&B algorithm is used to
schedule the unscheduled jobs in the remaining stages and obtain
an optimal/feasible solution for each given permutation of jobs.
Wang et al. (2011) developed a first-fit method to reduce the idle
time caused by the LS and combined it with SA for the HFS
problem with multiprocessor tasks.

The common features of most existing metaheuristic algorithms
for solving multiprocessor task scheduling in an HFS environment

are based on the two-phase structure, in which the permutation of
jobs is stochastically generated at stage 1, and then only a decoding
method, namely, the LS method, is used to assign the jobs to the
machines for sequel stages. A combined method with a variety of
decoding methods is not frequently found in the HFS problem with
multiprocessor tasks. As a result, this paper intends to develop a
cocktail decoding method that can be combined with several
popular priority rules in literature, and embedded in a standard
PSO to solve the HFS problem with multiprocessor tasks. Moreover,
a modified lower bound is also proposed based on existing lower
bounds in the literature to obtain a tighter lower bound.

The remainder of this paper is organized as follows. A number
of relevant simple priority rules are first reviewed to identify
important issues in the rules to be investigated, and then a
cocktail decoding method is proposed. Section 3 discussed the
methodology of the PSO algorithm. The cocktail decoding method
is embedded in the PSO to evaluate the fitness value for each
particle. Section 4 discusses various lower bound formulations.
Section 5 evaluates the proposed lower bound and PSO algorithm
using a computational experiment. Finally, concluding remarks
and directions for future research are summarized in Section 6.

2. Cocktail decoding method

As mentioned above, the performance of a heuristic algorithm
in solving the HFS problem with multiprocessor tasks is influ-
enced by two factors, namely, the determination of job sequence
at stage 1 and the assignment of jobs to each machine for the
subsequent stages. Jouglet et al. (2009) named the method to
assign unscheduled jobs on each machine for the subsequent
stages decoding method. Wang et al. (2011) stated that the
decoding method exhibits certain influences on the solution
quality for the considered problem. Moreover, priority rules are
popular for assigning the unscheduled jobs to machines in the
scheduling area, and thus, a variety of famous priority rules are
adopted as decoding methods, which are described as follows:

� Shortest processing time (SPT), where the jobs are sorted by
the ascending order of their processing times pkj for stage k.
� Longest processing time (LPT), where the jobs are sorted by the

descending order of their processing times pkj for stage k.
� Shortest total remaining processing time (STRPT), where the

jobs are sorted by the ascending order of their total processing
times

Pm
i ¼ k pij from stage k to last stage m.

� LTRPT (largest total remaining processing time) where the jobs
are sorted by the descending order of their total processing
times

Pm
i ¼ k pij from stage k to last stage m.

� Smallest processor requirement (SPR), where the jobs are
sorted by the ascending order of their processor requirements
sizekj for stage k.
� Largest processor requirement (LPR), where the jobs are sorted

by the descending order of their processor requirements sizekj

for stage k.
� Smallest occupied capacity (SOC), where the jobs are sorted by

the ascending order of their processing time multiplied by
processor requirement pkj� sizekj for stage k.
� Largest occupied capacity (LOC), where the jobs are sorted by

the descending order of their processing time multiplied by
processor requirement pkj� sizekj for stage k.
� Smallest total remaining occupied capacity (STROC), where the

jobs are sorted by the descending order of a total of their
processing time multiplied by processor requirementPm

i ¼ k pij � sizeij from stage k to the last stage m.
� Largest total remaining occupied capacity (LTROC), where the

jobs are sorted by the descending order of a total of their

F.-D. Chou / Int. J. Production Economics 141 (2013) 137–145138



http://isiarticles.com/article/5734

