Optimization of load balancing using fuzzy Q-Learning for next generation wireless networks

P. Muñoz *, R. Barco, I. de la Bandera

University of Málaga, Communications Engineering Dept., Spain Campus de Teatinos, Málaga 29071, Spain

Abstract

Load balancing is considered by the 3GPP as an important issue in Self-Organizing Networks due to its effectiveness to increase network capacity. In next generation wireless networks, load balancing can be easily implemented by tuning handover (HO) margins, achieving a decrease in call blocking. However, call dropping can be increased as a negative effect of the HO-based load balancing, because users usually are handed over to cells where the radio conditions are worse. In this work, a Fuzzy Logic Controller (FLC) optimized by the fuzzy Q-Learning algorithm is proposed for the load balancing problem, with the aim of decreasing call blocking in congested cells, while at the same time restricting call dropping in neighboring cells according to the network policy. In particular, two different approaches for the FLC optimization are evaluated in this work, highlighting that one of the proposed methods allows to accurately preserve the call quality constraint during the load balancing, while the other can adapt to network variations. Results show that the optimized FLC provides a notable reduction in call blocking while preserving call dropping under the operator constraint.

1. Introduction

During the last years, cellular networks have experienced a large increase in size and complexity. Generally, network planning provides proper dimensioning of radio resources during the design phase of the Radio Access Network. However, as traffic demand changes over time, both traffic demand and network resource dimensioning become misaligned, thus leading to an inefficient use of resources. To cope with such a problem in a cost-effective manner, self-optimizing techniques remains as the best solution rather than adding new resources.

Load balancing is a major issue addressed in the field of Self-Organizing Networks (SONs), whose main objective is the reduction of operational effort and cost in networks, (Döttling & Viering, 2009; 3GPP TR 36.902, 2009). SONs consist of a set of principles and concepts that can be applied on advanced real-world networks in order to automate the operation and improve network quality. SONs functions are classified into three related terms (INFOSO-ICT-216284 SOCRATES, 2008): Self-Configuration, Self-Optimization and Self-Healing. The first term, Self-Configuration, attempts to automate network deployment and parameter configuration, e.g., when a new resource is added to the existing infrastructure. Self-Healing is related to failure detection, diagnosis and mitigation to cope with major service outages. Lastly, Self-Optimization aims to dynamically adapt network parameters to improve network quality. Load balancing is tackled here as a Self-Optimizing task that can be solved by tuning specific network parameters, like those involved in the handover (HO) process.

The concept of SON is widely addressed in next-generation networks, being part of the specification of the wireless technology known as Long-Term Evolution (LTE) (Rinne & Tirkkonen, 2010). In addition, load balancing, as part of SON, has been recognized as one of the key enablers in LTE-advanced (3GPP TR 36.912, 2011). The load balancing problem can be solved by sharing traffic between adjacent cells. The HO process is responsible for transferring an ongoing call from one cell to another. By adjusting HO parameters settings, the service area of a cell can be modified to send users to neighboring cells. Thus, the size of the congested cell is reduced while adjacent cells increase in size taking users from the congested cell edge. As a result of a better matching between the spatial distribution of traffic demand and network resources, more users could be accepted in the crowded area so that the call blocking probability would be reduced (Luna-Ramírez, Toril, Fernández-Navarro, & Wille, 2011). A significant research effort has been devoted in the literature to the load balancing problem. Studies are technology-dependent: GERAN (Luna-Ramírez et al., 2011), GSM/UMTS (Tölli & Hakalin, 2002; Pillekeit, Derakhshan, Jugl, & Mitschele-Thiel, 2004), UMTS (Li, Fan, Yang, & Gu, 2005) and LTE (Lobinger, Stefanski, Jansen, & Balan, 2010; Nasri & Altman, 2007; Kwan, Arnott, Paterson, 2011).
Load balancing has an impact on the Grade-of-Service (GoS), which includes call accessibility and maintainability. As a result of a better exploitation of the system capacity, GoS is improved. Although HO-based load balancing is an effective method to share traffic in cellular networks, it may cause negative effects on call maintainability. If the HO margin is decreased, the target cell would increase the probability to be preferred than the serving cell (even if the connection quality is worse), so that some users could be handed over to the target cell. Those users, usually located in the cell edge, will experience worse radio conditions in the target cell as a result of applying such a traffic sharing technique. Thus, negative values of HO margins would increase the risk of dropping. The main contribution of this work is the design of an algorithm to control quality performance for real-time traffic during the load balancing process.

Typically, studies found in the bibliography addressing the load balancing problem aim to provide more capacity to a fixed number of users in the system so that they experience higher instant throughput or lower delay, but accessibility is usually not tackled. In future networks, accessibility will be an important feature as services such as VoIP calls are expected to be widely used. In addition, the connection quality loss experienced by some users when load balancing is carried out and controllability of such an effect have not been properly addressed in the literature. This paper addresses how much the connection quality can be decreased when load balancing is carried out depending on the operator policy. Thus, flexibility and easiness from the network operator perspective is provided by simply adjusting a single parameter. Unlike the design in Nasri et al. (2007), the FLC proposed in this paper balances traffic load in a intra-system LTE scenario where call dropping becomes a key issue. In addition, HO margins of the standard HO algorithm are adjusted in this paper, instead of tuning load thresholds, as proposed in Nasri et al. (2007). In Muñoz, Barco, de la Bandera, Toril, and Luna-Ramírez (2011), the fuzzy Q-Learning algorithm is applied to the intra-system load balancing problem. However, the developed algorithm does not address the problem of the connection quality when load balancing is performed, which is the main objective of this paper. In addition, the analysis in Muñoz et al. (2011) is evaluated in a GSM network. Thus, the FLC proposed in this paper can be considered as a cost-effective solution to increase network capacity in next generation wireless networks as hardware upgrade is not necessary.

The rest of the paper is organized as follows. Section 2 describes the system model for an LTE network, including the main system measurements and HO parameters. In Section 3, the structure of the proposed self-tuning scheme is presented. Section 4 explains the fuzzy Q-Learning algorithm and its application to the proposed FLC. Section 5 describes the simulation setup and discusses the results. Finally, Section 6 draws the conclusions.

2. System model

2.1. Network model

The proposed self-tuning scheme is applicable to any Radio Access Technology for next generation cellular networks. In particular, an LTE downlink macro-cellular network providing constant bit rate service is considered here. Each cell is controlled by an eNodeB (i.e., a base station) and all the cells use the same frequency band. Following the 3rd Generation Partnership Project (3GPP) standard specifications, the eNodeBs are interconnected by the X2 interface, enabling direct communication between them. Thus, measurements such as traffic load can be easily exchanged between eNodeBs over the X2 interface and faster HOs can be performed.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات