Towards a global control strategy for induction motor: 
Speed regulation, flux optimization and power factor correction

A. El Fadili, F. Giri, A. El Magri, R. Lajouad, F.Z. Chaoui
GREYC Lab., University of Caen, Caen, France

1. Introduction

Induction motors are featured by their interesting power/mass ratio, relatively low cost and simple maintenance (as they include no mechanical commutator). It is widely agreed that these machines have promising perspectives in the industrial actuator field. This has motivated an intensive research activity on induction machine control especially over the last fifteen years. The complexity of this problem is threefold:

– The multivariable and nonlinear nature of the machine dynamics.
– The multiform interaction with its environment: supply grid, power converters, varying load, etc.
– The multiplicity of control objectives: speed regulation, energy consumption optimization, power factor correction, fault detection and diagnostic, etc.

Most previous works have focused only on speed/flux regulation (with constant flux reference) following several control strategies ranging from simple techniques, e.g. field-oriented control [11,14], to more sophisticated nonlinear approaches, e.g. feedback linearization [1], direct torque control [21,4] or sliding mode control [19]. A common point of these works is that the control design relies on a relatively simple machine model, next called standard model, assuming a linear representation of the magnetic circuit (which of course is not true in real machines). Accordingly, most previous control solutions involved flux regulation around constant values (Fig. 1). Specifically, the constant flux reference is equal to its nominal value generally located at the elbow of the machine magnetic characteristic [12,2]. Then, energetic efficiency is actually maximal provided that the machine operates all time in the neighborhood of its nominal point. But, this is not the case in most practical applications because the machine load is generally varying [8]. Indeed, in presence of small loads, the operation point is below the nominal value causing useless energy stored in stator inductances which reduces the machine efficiency. In the case of overloaded machine, this operates in the saturation zone of its magnetic characteristic but, then, the standard model is no longer valid and, consequently, the control performances are no longer guaranteed. To overcome the above shortcomings, it is necessary in speed control to let the flux reference be dependent on both the speed reference and torque-load, i.e. the flux reference must be state-dependent. Examples of speed/flux controllers involving state-dependent flux reference (Fig. 2) have been developed in [15]. The proposed controllers include optimal flux generators the design of which relies on a machine model that takes into account the nonlinearity of the magnetic characteristic.

However, even in the preceding works the control problem has been relatively simplified because the motor is viewed there as a
separated system directly controlled by acting on the stator voltages. As a matter of fact, in practical applications, the motor is physically controlled through a (three-phase) DC/AC PWM switch inverter. Furthermore, the inverter is connected to a power supply net through a AC/DC PWM rectifier (Fig. 3). Ignoring the latter amounts to suppose that the DC-link voltage (i.e. the AC/DC rectifier output voltage) is perfectly regulated. The point is that perfect regulation of such voltage cannot be ensured ignoring the rectifier load which is nothing other than the set ‘DC/AC inverter–Motor’. Moreover, the Rectifier–Inverter–Motor association strongly interacts with the AC power supply net (Fig. 3). Accordingly, the power flow is in fact bidirectional: the circulation sense depends on the load variation. Then, undesirable current harmonics are likely to be generated in the AC line, due to the strongly nonlinear nature of the association ‘converter–inverter–motor’. This harmonic pollution has several damaging effects on the quality of power distribution along the AC line, e.g. electromagnetic compatibility issues, voltage distortion, reactive power increase, larger power losses, increased voltage drops, etc. In this respect, standards such as IEEE519-1992 and IEC 61000-3-2/IEC 61000-3-4 indicate the current harmonic limits to be complied with, in terms of power factor correction [9,18]. Of course, the power factor can be improved using additional protection equipments (transformers, condensers, etc.) and/or over-dimensioning the converter and net elements. However, this solution is costly and may not be sufficient.

An attempt to simultaneously deal with speed/flux control and PFC requirement has been done [16]. But, the flux optimization control problem for the whole association ‘rectifier–inverter–motor’, seeking simultaneous achievement of all relevant control objectives, i.e. tight speed regulation for wide set-point variation range, flux optimization despite large load change, satisfactory power factor correction (PFC), fault detection and diagnostic, etc. Such a global control strategy has still to be developed (Fig. 4). This study
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات