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a b s t r a c t

In this paper, we focus on the relationship between operations-based variables (specifically, production
speed, scrap rate and maintenance speed) and the manufacturing cost. These variables usually produce
opposite influences on the variable cost and the fixed cost. For example, setting the production speed at a
high level is beneficial for reducing the variable cost. However, maintaining the high speed incurs
considerable fixed costs at the same time. Therefore, an optimization approach is necessary to determine
the optimal values of the operational variables for minimizing the average cost. First, a discrete-event
simulation procedure is designed for describing the stochastic production environment and for
evaluating the settings. Then, an optimization approach based on the ordinal optimization (OO)
philosophy and particle swarm optimization (PSO) is used to search in the continuous space of the
operational variables. In this process, the optimal computing budget allocation technique is applied so as
to fully utilize the computational resource and potentially save the computational time. Finally, numeric
computations are conducted for verifying the effectiveness of the proposed algorithm. Sensitivity
analysis and discussions are also presented.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the production and operations management area, traditional
research has focused on the productivity and efficiency of manu-
facturing systems. For example, makespan (Melouk et al., 2004;
Damodaran et al., 2006) or total tardiness (Schaller, 2007; Biskup
et al., 2008) is commonly adopted as the objective function in the
studies of production scheduling. Makespan (often noted as CmaxÞ
is also known as the ultimate completion time of a set of jobs and
thus is an index for describing the productivity (or capacity) of the
production system. Total tardiness (∑TiÞ is an index for describing
the ability to meet the requirements of customers (i.e. service
quality) and thus reflects the firm's management efficiency.
Of course, these two types of performance measures are able to
capture some key issues of concern for operations managers.
However, it is gradually recognized since the late 1990s that
operations management must interact with finance (Cachon and
Terwiesch, 2009, Chapter 5) and other areas in order to achieve
profitability. For example, profitability analysis is an important
aspect in the research of corporate finance. Thus, it is interesting to

study the relationship between operational performance and
profitability (Soteriou and Zenios, 1999), as well as how to
optimize the organization of operational settings for maximizing
the profit of a manufacturing firm.

In the literature, there are several publications which investi-
gate the link between operational variables and financial perfor-
mance in service organizations. In particular, the US airline
industry has been widely examined as a subject of study. For
example, Tsikriktsis (2007) uses regression method to explore the
historical data of major US airline companies (released by the US
department of transportation) and finds that some operational
variables (e.g. capacity utilization) are clearly linked with profit-
ability. Lapré and Scudder (2004) present a model for describing
the relationship between service variables (e.g. lost luggage, over-
booking) and the financial performance. However, the similar
research is scarce with regard to the manufacturing industry,
partly because the manufacturing companies have not been forced
to disclose the operational data to the public (as required in the
airline industry). Therefore, in order to perform such a research for
the manufacturing sector, simulation is a viable approach. The
present paper is just an attempt in this area.

In most existing research for production systems, random events
have not been fully considered. For instance, a usual assumption in
production scheduling research (Haouari and Hidri, 2008; Wang
et al., 2008) is that the machines are continuously available and no
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defects will be produced. This is of course inconsistent with the real-
world situation. Indeed, if random factors (such as machine break-
down and job failure) are incorporated into the research model, we
will face a discrete event dynamic system (DEDS) (Cassandras and
Lafortune, 2008), and thus discrete-event simulation (Banks et al.,
2009) is needed for the performance evaluation of such systems
involving randomness. Therefore, in this paper, we adopt simulation-
based optimization to find satisfactory settings for the adjustable
operational variables in the manufacturing system. The considered
objective to minimize is the unit manufacturing cost, which is a
measure for profitability if the price of the product is determined
exogenously (e.g. according to the market conditions).

The rest of the paper is organized as follows. Section 2 introduces
some topics related with our research andmethods. Section 3 defines
the model of the problem we are to study. Section 4 describes the
discrete-event simulation procedure for the discussed production
model. Section 5 proposes a crude model for fast evaluation of
operational settings to the production system. Section 6 describes the
approach we propose for optimizing the operational variables in the
system, which is based on the ordinal optimization methodology and
particle swarm optimization. Section 7 introduces the numerical
setup for the computational experiments. Section 8 presents the key
computational results and comparisons. Section 9 performs sensitiv-
ity analysis on the long-term parameters in the system, leading to a
discussion about the return on investment. Finally, Section 10
concludes the paper.

2. Related research background

2.1. Uniform parallel machine scheduling

In the parallel machine scheduling problem, we consider n jobs
that are waiting for processing. Each job consists of only a single
operation which can be processed on any one of the m machines
M1;…;Mm. As a conventional constraint in scheduling models,
each machine can process at most one job at a time, and each job
may be processed by at most one machine at a time.

There are three types of parallel machines (Brucker, 2007):

� Identical parallel machines (denoted by “P”). The processing
time pkj of job j on machine k is identical for each machine, i.e.
pkj ¼ pj.� Uniform parallel machines (denoted by “Q”). The processing
time pkj of job j on machine k is pkj ¼ pj=qk, where qk is the speed
of machine k.

� Unrelated parallel machines (denoted by “R”). The processing
time pkj of job j on machine k is pkj ¼ pj=qk;j, where qk;j is a job-
dependent speed of machine k.

If preemption of operations is not allowed, scheduling uniform
parallel machines with the makespan (maximum completion
time) criterion (described as Q jjCmax) is a strongly NP-hard
problem. According to the reduction relations between objective
functions (Pinedo, 2008), scheduling uniform parallel machines
under due-date-related criteria (e.g. total tardiness) is also
strongly NP-hard. Therefore, meta-heuristics have been widely
used for these problems (Raja et al., 2008).

2.2. Simulation optimization and ordinal optimization (OO)

The simulation optimization problem is generally defined as:
find a setting of parameters (θ) which minimizes a given objective
function JðθÞ, i.e.
min
θ∈Θ

JðθÞ;

where Θ represents the search space for the optimization variable
θ. The key assumption in simulation optimization is that JðθÞ is not
directly available, and simulation is the only way to acquire the
evaluation of θ. Moreover, since practical simulation procedures
must make a trade-off between accuracy (which intends to include
as many details as possible) and time performance (which
demands the simulation be as fast as possible), simulation can
only provide a noisy estimation of JðθÞ, which is usually noted as
ĴðθÞ.

Simulation optimization problems often arise in the design of
complex systems such as electric power grid, large-scale computer
network, and semiconductor manufacturing system. The variable θ
corresponds to the controllable parameters in the system to be
designed (for this reason, θ is usually called a setting rather than a
solution in terms of simulation optimization). In practice, it is
unaffordable to perform the parameter tuning process on the real
system itself, so simulation optimization is useful for finding a
good enough setting for the system without expensive experi-
ments. However, three difficulties naturally exist in the imple-
mentation of simulation optimization: (1) the search space (Θ) is
often very large, containing zillions of choices for the system
parameters; (2) simulation is usually very time-consuming for
real-life systems; (3) simulation is subject to random errors, so a
large number of simulation replications have to be adopted to get
the correct evaluation of θ.

These problems all suggest that simulation optimization can be
extremely costly in terms of computational burden. For a survey of
existing methods for simulation optimization, interested readers
can refer to Fu and Glover (2005). Here we will focus on the
ordinal optimization (OO) methodology, which was first proposed
by Ho et al. (1992).

OO attempts to settle the above difficulties by emphasizing two
important ideas: (1) order is much more robust against noise than
value; (2) aiming at the single best solution is computationally
expensive, so it is wiser to focus on the “good enough”. It not just
mentions these ideas in words, but the major contribution of OO is
that it quantifies these ideas and thus OO can provide accurate
guidance for our optimization practice. We will list the main
procedure of basic OO as follows. Meanwhile, we strongly suggest
interested readers to turn to Ho et al. (2007) for detailed theory
and proofs.

Suppose we want to find k settings that belong to the top-g
(normally kog). Then, basic OO consists of the following steps:

Step 1: Uniformly and randomly select N settings from Θ (this set
of initial solutions is denoted by I).

Step 2: Use a crude and computationally fast model for the
studied problem to estimate the performance of the N
settings in I.

Step 3: Pick the observed top s settings of I (as estimated by the
crude model) to form the selected subset S.

Step 4: Evaluate all the s settings in S using the exact simulation
model, and then output the top k (1≤kos) settings.

As an example, let g¼50 and k¼1. If we take N¼1000 in Step
1 and the crude model in Step 2 has a moderate noise level, then
OO theory ensures that the top setting in S (with s≅30) is among
the actual top-50 of the N settings with probability no less than
0.95. In practice, s is determined as a function of g and k, i.e.
s¼ Zðg; k;N;OPCclass;noiselevelÞ.

The ordered performance curve (OPC) is a conceptual plot of the
objective values as a function of the order of performance (i.e. the best,
the 2nd best, and so on). It describes the solution distribution (and
thus the difficulty level) of the considered problem. Noise level is used
to describe the degree of accuracy of the crude model. Since
Jcrude�model ¼ Jcomplex�simulation�model þ noise, the noise level can be
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