Somatic and neuroendocrine responses to standard and biologically salient acoustic startle stimuli in monkeys


Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States

Dissemination and Training Division National Center for PTSD, Palo Alto, CA, United States

Received 27 April 2010; received in revised form 26 July 2010; accepted 24 August 2010

KEYWORDS
ACTH; Acoustic startle; Alarm call; Biological salience; Cortisol; HPA axis; Primate models; Squirrel monkey

Summary The startle response, a simple defensive response to a sudden stimulus signaling proximal threat, has been well studied in rodents and humans, but has been rarely examined in monkeys. The first goal of the present studies was to develop a minimally immobilizing startle measurement paradigm and validate its usefulness by testing two core features of the startle response (habituation and graded responsivity) in squirrel monkey subjects. Two different types of startle stimuli were used: standard broad-band noise bursts, and species-specific alarm vocalizations ("yaps") which are elicited in response to threat in both wild and captive animals. The second goal of the present studies was to test whether yaps produce enhanced startle responsivity due to their increased biological salience compared to simple, non-biologically relevant noise bursts. The third goal of the present studies was to evaluate the hypothalamic-pituitary-adrenal (HPA) axis response to startle stimuli, as little is known about the stress-activating role of startle stimuli in any species. These experiments determined that the whole-body startle response in relatively unrestrained squirrel monkeys habituates across repeated stimulus presentations and is proportional to stimulus intensity. In addition, differential habituation was observed across biologically salient vs. standard acoustic startle stimuli. Responses to "yaps" were larger initially but attenuated more rapidly over trials. Responses to "yaps" were also larger in the early subepochs of the response window but then achieved a lower level than responses to noise bursts in the later subepochs. Finally, adrenocorticotropic hormone and cortisol concentrations were significantly elevated above baseline after startle stimuli presen-
1. Introduction

The startle response is a simple defensive response to a sudden acoustic, tactile, or visual stimulus signaling proximal threat (Landis and Hunt, 1939). Startle responses habituate rapidly and response magnitude is a monotonic function of stimulus intensity (Davis and File, 1984; Pilz and Schnitzler, 1996; Pilz et al., 1987). The neural circuitry of the startle response and its primary modulating inputs have been described in detail (Davis et al., 1982, 1997). In animals, the startle response is typically measured by the magnitude of whole-body movement. In humans, the most common response channel has been contraction of the orbicularis oculi muscle, though cardiac acceleration and scalp electroencephalographic potential are also used (Blumenthal et al., 2005). Across species, the startle response can be potentiated or attenuated by a variety of factors (Bradley et al., 2006; Lang and Davis, 2006), in particular, fear and stress (Brown et al., 1951; Davis, 1984). Startle is enhanced in people with anxiety disorders (Grillon and Baas, 2003; Stam, 2007), and can be attenuated by anxiolytic medications (Bitsios et al., 1999). For these reasons, the startle response is a leading tool in translational research into human psychopathology.

There have been few attempts to develop startle paradigms in monkeys with a few important exceptions (Davis et al., 2008; Linn and Javitt, 2001; Winslow et al., 2002). Monkey models are important because corticolimbic brain substrates involved in complex cognition and emotion regulation differ significantly in rats and mice compared to human and non-human primates (Ongur and Price, 2000; Preuss, 1995). Because functional abnormalities in these brain regions are thought to underlie stress-related psychiatric disorders characterized by enhanced startle responsivity, and neurobiological assessments can be made readily in monkeys but not in humans, monkey models bridge a critical gap between existing rodent and human research paradigms.

The first goal of the present studies was to develop an acoustic startle paradigm for use in squirrel monkeys that was minimally immobilizing and therefore did not require extensive acclimation prior to experimental initiation. The specific details of this startle paradigm are described below. Our studies sought to evaluate two core features of the startle response: habituation to repeated stimulus presentations and monotonically increasing response magnitudes to stimuli of increasing intensity.

The second goal of these studies was to examine whether the biological salience of acoustic stimuli alters the two core features of the startle response evaluated in these experiments. In view of the fact that broad-band noise bursts are rare under free-living conditions in nature, we chose to employ a second type of stimulus, a biologically salient one, which could be expected to elicit abrupt imperative interruptions of on-going activity. Squirrel monkeys utilize a relatively large corpus of species-specific vocalizations (Jurgens, 1998). Among them, “yap” alarm vocalizations are typically elicited in response to threats (e.g., terrestrial carnivores), and serve to orient other troop members to them (Newman, 1985). It is noteworthy that “yaps” are otherwise physically divergent from classic broad-band noise burst startle stimuli especially in having long rise-times (see Fig. 1). Because yaps are typically elicited in response to threatening circumstances (Newman, 1985), we hypothesized that yaps would produce enhanced startle responsivity due to their increased biological salience compared to simple, non-biologically relevant noise bursts.

The third goal of these studies was to examine the hypothalamic-pituitary-adrenal (HPA) axis response to startle stimuli in monkeys. There is considerable evidence that the HPA axis impacts startle responsivity in rodents and humans. Pharmacological pretreatment with drugs that either increase HPA axis drive [e.g., corticotropin-releasing hormone (CRH) agonists or metyrapone] or block negative feedback (e.g., glucocorticoid receptor antagonists)
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات