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a b s t r a c t

The paper investigates whether transforming a time series leads to an improvement
in forecasting accuracy. The class of transformations that is considered is the Box–Cox
power transformation, which applies to series measured on a ratio scale. We propose a
nonparametric approach for estimating the optimal transformation parameter based on
the frequency domain estimation of the prediction error variance, and also conduct an
extensive recursive forecast experiment on a large set of seasonalmonthlymacroeconomic
time series related to industrial production and retail turnover. In about a fifth of the series
considered, the Box–Cox transformation produces forecasts which are significantly better
than the untransformed data at the one-step-ahead horizon; inmost cases, the logarithmic
transformation is the relevant one. As the forecast horizon increases, the evidence in favour
of a transformation becomes less strong. Typically, the naïve predictor that just reverses
the transformation leads to a lower mean square error than the optimal predictor at
short forecast lead times. We also discuss whether the preliminary in-sample frequency
domain assessment conducted here provides reliable guidance as to which series should
be transformed in order to improve the predictive performance significantly.
© 2012 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Transformations aim to improve the statistical analysis
of time series, by finding a suitable scale for which amodel
belonging to a simple andwell known class, e.g. the normal
regression model, has the best performance. An important
class of transformations which are suitable for time series
measured on a ratio scale with strictly positive support is
the power transformation; originally proposed by Tukey
(1957) as a device for achieving a model with a simple
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structure, normal errors and a constant error variance, it
was subsequently modified by Box and Cox (1964).

The objective of this paper is to assess whether
transforming a variable leads to an improvement in the
forecasting accuracy. This issue has already been debated
in the time series literature. The use of the Box–Cox
transformation as a preliminary specification step before
fitting an ARIMA model was recommended in the book by
Box and Jenkins (1970). In his discussion of the paper by
Chatfield and Prothero (1973), Tunnicliffe Wilson (1973)
advocated its use and showed that for the particular case
study considered in the paper, the monthly sales of an
engineering company, maximum likelihood estimation of
the power transformationparameter could lead to superior
forecasts. This point was elaborated further by Box and
Jenkins (1973).
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A more extensive investigation was carried out by
Nelson and Granger (1979), who considered a dataset
consisting of twenty-one time series. After fitting a
linear ARIMA model to the power transformed series
and using 20 observations for a post-sample evaluation,
they concluded that the Box–Cox transformation does not
lead to an improvement in the forecasting performance.
Another important conclusion, which is also supported by
simulation evidence, is that the naïve forecasts, which are
obtained by simply reversing the power transformation,
perform better than the optimal forecasts based on
the conditional expectation. The explanation for this is
that the conditional expectation underlying the optimal
forecast assumes that the transformed series is normally
distributed. However, this assumptionmay not be realistic.
In contrast to Nelson and Granger’s results, Hopwood,
McKeown, and Newbold (1981) find, for a range of
quarterly earnings-per-share series, that the Box–Cox
transformation can improve forecast efficiency.

In related work, Lütkepohl and Xu (2011) have investi-
gatedwhether the logarithmic transformation (as a special
case of a power transformation) leads to an improved fore-
casting accuracy relative to the untransformed series; the
target variables are annual inflation rates, computed from
seasonally unadjusted price series. The overall conclusion
is that forecasts based on the original variables are charac-
terized by a lowermean square forecast error. On the other
hand, based on data on a range of monthly stock price in-
dices, as well as quarterly consumption series, Lütkepohl
and Xu (2012) conclude that using logs can be quite ben-
eficial for forecasting. They also point out that there does
not appear to be any reliable criterion for deciding between
logs and levels for the purpose of maximizing the forecast
accuracy.

From a theoretical standpoint, Granger and Newbold
(1976) provided a general analytical approach to forecast-
ing transformed series, based on the Hermite polynomials
series expansion. Analytical expressions for the minimum
mean squared error predictors were provided by Pankratz
andDudley (1987) for specific values of the Box–Coxpower
transformation parameter. Guerrero (1993) suggested a
simple approximate method for obtaining bias-corrected
forecasts in the original measurement scale. Carroll and
Ruppert (1981) dealt with the contribution of transfor-
mation parameter estimation to the overall mean square
forecast error, concluding that it is usually small. Collins
(1991) discussed and compared different methods for the
interval forecasting of transformed series. More recently,
Pascual, Romo, and Ruiz (2005) proposed a bootstrap pro-
cedure for constructing prediction intervals for a series
when an ARIMA model is fitted to its power transforma-
tion. De Bruin and Franses (1999) considered forecasting
power transformed series using a class of nonlinear time
series models (smooth transition autoregressive models).
Finally, the Box–Cox transformation is popular in financial
time series analysis and has been considered for forecast-
ing volatility (see e.g. Goncalves & Meddahi, 2011; Higgins
& Bera, 1992; and Sadorsky & McKenzie, 2008) and price
durations (Fernandes & Grammig, 2006), for example.

This paper contributes to the debate in two ways: first,
we propose a fast nonparametric method, based on the

estimation of the prediction error variance (p.e.v.) of the
normalized Box–Cox power transformation, which can be
used to estimate the transformation parameter and to de-
cide whether or not to use the power transformation if
forecasting is the objective. Our procedure has the ad-
vantage that it does not require the normality assump-
tions which are used in maximum likelihood procedures.
Hence, it circumvents the problem observed by Nelson and
Granger (1979). Our second contribution is to assess the
empirical relevance of the choice of the transformation
parameter by performing a large scale recursive forecast
exercise, on a dataset consisting of 530 seasonal monthly
time series. In the previous studies, only much more lim-
ited datasets were used, and by considering such a large
dataset we hope to get a better overall picture of the sit-
uation, and may be able to explain some of the previous
discrepancies in results. A side issue is whether the naïve
predictor outperforms the optimal predictor in terms of
the mean square forecast error. We find that there is a
certain percentage of series where significant forecast im-
provements are obtained by a power transformation. The
challenge is then to identify the series for which a power
transformation may help.

The plan of the paper is as follows. In Section 2, after
reviewing the Box–Cox transformation, we discuss the
predictors of interest. In Section 3, we present the non-
parametric procedure for estimating the p.e.v. and the
transformation parameter. Section 4 provides a detailed
discussion of the advantages and limitations of themethod,
in the light of the assumptions underlying the analysis.
Section 5 discusses the estimation results on the dataset. In
Section 6 we judge the relevance of the transformation for
out-of-sample forecasting by conducting a rolling forecast-
ing experiment; and conclusions are drawn in Section 7.

2. Forecasting Box–Cox transformed series

Box and Cox (1964) proposed a transformation of a time
series variable yt , t = 1, . . . , n, that depends on the power
parameter λ in the following way:

yt(λ) =


yλt − 1
λ

, λ ≠ 0,
ln yt , λ = 0,

(1)

where ln denotes the natural logarithm. When λ is equal
to 1, the series is analysed on its original scale, whereas the
case λ = 0 corresponds to the logarithmic transformation.
Other important special cases arise for fractional values
of λ, e.g. the square root transformation (λ = 1/2).
Obviously, for the transformation to be applicable, the
series has to be strictly positive.

Suppose that the optimal forecast of the Box–Cox
transformed series is denoted by ỹt+h|t(λ), h = 1, 2, . . . ,
where h is the forecast lead. Here, optimality is intended
in the mean square error sense, so that ỹt+h|t(λ) =

E[yt+h(λ)|Ft ] is the conditional mean of yt+h(λ), given
the information set at time t , here denoted as Ft . The
conditional mean is typically available in closed form.
Finally, letσ 2

h (λ) = E{[yt+h(λ)−ỹt+h|t(λ)]
2
|Ft} denote the

h-step-ahead prediction error variance, which we assume,
for the sake of simplicity, to be time-invariant.



http://isiarticles.com/article/5961

