A Delphi-AHP-TOPSIS based benchmarking framework for performance improvement of a cold chain

Rohit Joshi a,⇑, D.K. Banwet b, Ravi Shankar b

a Indian Institute of Management, Shillong, Meghalaya, India
b Department of Management Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India

A R T I C L E I N F O

Keywords:
Delphi method
AHP
TOPSIS
Cold chain
Performance
Benchmarking
Retail industry

A B S T R A C T

This paper aims to develop a benchmarking framework that evaluates the cold chain performance of a company, reveals its strengths and weaknesses and finally identifies and prioritizes potential alternatives for continuous improvement. A Delphi-AHP-TOPSIS based methodology has divided the whole benchmarking into three stages. The first stage is Delphi method, where identification, synthesis and prioritization of key performance factors and sub-factors are done and a novel consistent measurement scale is developed. The second stage is Analytic Hierarchy Process (AHP) based cold chain performance evaluation of a selected company against its competitors, so as to observe cold chain performance of individual factors and sub-factors, as well as overall performance index. And, the third stage is Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) based assessment of possible alternatives for the continuous improvement of the company's cold chain performance. Finally a demonstration of proposed methodology in a retail industry is presented for better understanding. The proposed framework can assist managers to comprehend the present strengths and weaknesses of their cold. They can identify good practices from the market leader and can benchmark them for improving weaknesses keeping in view the current operational conditions and strategies of the company. This framework also facilitates the decision makers to better understand the complex relationships of the relevant cold chain performance factors in decision-making.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A ‘cold chain’ is comprises of equipments and processes that keeps perishable products under conditioned environment. These perishable products can be categorized into two types: living products (fruits, vegetables, live seafood, flowers, etc.) and non-living products (meat, dairy products, processed food products, medicines, blood, frozen products, etc.), which all require appropriate atmosphere to defy microbial spoilage (Donselaar, Woensel, Broekmeulen, & Fransoo, 2006). In today's competitive environment, perishable products are one of the main drivers through which retailers are attaching additional customers to increase profitability. Heller has stated that the quality of perishable goods assortment is becoming the core reason many customers choose one retailer over another (as cited in Thron, Nagy, & Wassan, 2007). The global market for perishable goods such as cooled products and processed foods is growing due to changing lifestyles and overall declining prices.

Retailers who are in the business of perishables can find a direct correlation between the cold chain performance and the quality delivered to the customer. Any disorder in time–distance or temperature in the cold chain could hamper the net present value of the activities and adversely influence the over all performance (Bogataj, Bogataj, & Vodopivec, 2005). Since long time, the cold chain data has been under utilized and used solely for the purposes of evaluating the integrity of individual shipments (i.e. facilitating the accept or reject decisions). These data can be gathered to measure performance of the cold chain, which in turn can identify flaws and weaknesses in the processes.

Benchmarking is a well-defined tool for improving these weaknesses through improvement processes in which a company measures its performance against that of market leaders, finds how market leaders have achieved their performance levels, and prudently uses this knowledge to improve its own performance (Saunders, Mann, & Smith, 2007). A well defined performance measurement system (PMS) aims to support the setting of objectives, evaluating performance, and determining future courses of action on a strategic, tactical and operational level.
and image, long production throughput time, refrigerated trans-
physical product features like appearance, taste, odor, color, size
supply chains like shelf life constraints, seasonality in production,
it has many characteristics that set them apart from other types of
2. Literature review
and fruits under the same roof.
grower/producers and consumer. Authors specifically targeted on
operations of the companies that provide direct link between
improving the weaknesses, the best practices learnt from the mar-
imation of fresh fruits and vegetables, is wasted only because of inad-
produce valued at Rs 70,000 million ($1400 M) is lost in wastages
which is tantamount to the total production of the Great Britain
(Khan, 2005). The high margin of product losses offers a significant
for the improvement and advocates for technology and research advancement with in this domain. As one cannot im-
prove what one cannot measure, the necessity of the hour is to
measure the current status of Indian cold chain performance.
In light of above, this research paper delves into the perfor-
ance improvement of the cold chain in Indian context. Here, a
framework is proposed for performance evaluation of the cold
chain and its improvement through effective benchmarking. This
framework is suitable for the actual situations of the cold chains
in the Indian retail market. The relevant information was collected
from the field visits to various retail stores in India followed by an
extensive literature review and consultation with the experts.
1.2. Research goal
This research mainly discusses the Key Performance Factors
(KPF) of Indian cold chain, so as to provide a consistent measuring
system to establish the basis of an evaluation reference. Based on
this consistent measuring system the cold chain performance in-
dex of the chosen company can be measured against its competi-
tors’. Subsequently the strengths and weaknesses of the company
can be identified and their competitive gains and losses can be
examined. These identified weaknesses can be considered as the
performance gap or an opportunity for improvement. Further, for
improving the weaknesses, the best practices learnt from the mar-
et leader are then short-listed and examined against current oper-
ational conditions of the selected company to choose the preferred
one for bridging the performance gap. This should be a continuous
improvement process as the company can improve its weaknesses
one after another.
1.3. Research scope and target group
The companies trading in perishable products like fruit and vegetable,
flowers, milk and milk product, meat and meat prod-
ucts, etc. are focused upon. The research scope is the cold chain
operations of the companies that provide direct link between
grower/producer and consumer. Authors specifically targeted on
cooperatives governed by Government of India and privately
owned supermarket chains offering fresh and processed vegetable
and fruits under the same roof.
2. Literature review
Measuring the performance of a cold chain is difficult, because
it has many characteristics that set them apart from other types of
supply chains like shelf life constraints, seasonality in production,
physical product features like appearance, taste, odor, color, size
and image, long production throughput time, refrigerated trans-
portation and storage requirement, traceability, product quality
and safety, etc. (Aramyan, Oude Lansink, Van der Vorst, & Van
Kooten, 2007; Mangina & Vlachos, 2005).
Many researchers (Ghobadian, Gallear, & Li, 2007; He,
Ghobadian, Gallear, & Sohal, 2006; Gunasekaran, Patel, &
McGaughey, 2004; Otto & Kotzab, 2003; Brewer & Speh, 2001;
Lambert & Pohlen, 2001) have significantly contributed on PMS
for supply-chain management and stressed the need of a well-
defined set of performance factors for establishing benchmarks. A
few studies have been done on agri-food supply-chain at different
contexts and at different levels. Van der Vorst (2005) proposed a
framework for the development of innovative food supply-chain
networks and discussed the implications for performance mea-
surement systems and their respective bottleneckes. Aramyan
et al. (2007) included the performance factors ranging from highly
qualitative factors like customer satisfaction to quantitative factors
such as return on investments.
Chan, Chan, Lau, and Ip (2006) stresses that in order to improve
performance of the entire cold chain there is a need to look into
factors with which the performance of product, services and pro-
cess can be evaluated. Profitability is a traditional performance
factor and all cold chain participants would like to receive an
acceptable return on their investments after excluding various
costs (Da Silva & Filho, 2007); For agri-food chains, both produc-
tion and price stability affect food security. Therefore, the ability
to provide enough products to guarantee an adequate supply to
meet food needs is also an important performance factor (Manning,
Baines, & Chadd, 2008; Da Silva & Filho, 2007). Suitable
performance factors are needed to answer whether consumers
get the products demanded, in terms of quantity, quality,
timeliness and prices. (Fearne, Barrow, & Schulenberg, 2006; Bea-
mon, 1999).
Many researchers (Sahin, Babag˘, Yves, & Renaud, 2007; Blanco,
Masini, Petracchi, & Bandoni, 2005; Mangina & Vlachos, 2005; Jahre
& Hatteland, 2004) have discussed about various issues of the cold
chain on different links (farmer/producer–processor–distributor–
retailer). They resonated in their views that cold chain is frequently
broken at various stages. This drastically reduces its performance.
In this regard Fearne and Hughes (2000) discussed supply-chain
developments in the UK fresh produce industry and identified vari-
ous success factors like improvement in cost control and innova-
tion, etc. Bogataj et al. (2005) have studied the stability of
perishable goods in logistic chains and discussed the disturbances
which reduces the hygiene and quality of perishables. For perish-
ables, maintaining the hygiene, safety, and expectedness of quality
and freshness requires efficient equipment with guaranteed ther-
mal characteristics, appropriate operating modes and proper infor-
system management (Amjadi (2005) & Manning et al. (2006), Montanari
(2008) observed that identification of the critical parameters
affecting food quality and safety and quantification through a sys-
tematic modeling approach will allow monitoring the quality and
safety status of food products throughout the cold chain.
The traceability issues were taken by many researchers
(Kelepouris, Pramatarii, & Doukides, 2007; Regattieri, Gamberi, &
Manzini, 2007; Folinas, Manikas, & Manos, 2006; Joshi et al., in press)
and have stated the need for reliable IT infrastructure of cold
chain. In supplement to this, Rijswijk & Frewer (2008) investigated
that traceability is linked not only to food safety, but also to food
quality. Taylor & Fearne (2006) have observed that most significant
challenge in cold chain management is continuous imbalance be-
tween supply and demand which is supported by Gorton, Dum-
itrashko, & White (2006) while discussing the issues overcoming the
supply-chain failure in agri-food sector. At retail level main-
taining cold chain, inventory control and return policy of perish-
able items are also some issues which have been referred to in
the literature (Donselaar et al., 2006 & Likar & Jevsnik, 2006).
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات