
Nearly optimal FIFO buffer management
for two packet classes q

Zvi Lotker, Boaz Patt-Shamir *

Department of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

Received 16 May 2002; received in revised form 27 January 2003; accepted 27 January 2003

Responsible Editor: J. Roberts

Abstract

We consider a FIFO buffer with finite storage space. An arbitrary input stream of packets arrives at the buffer, but

the output stream rate is bounded, so overflows may occur. We assume that each packet has value which is either 1 or a,

for some a > 1. The buffer management task is to decide which packets to drop so as to minimize the total value of lost

packets, subject to the buffer space bound, and to the FIFO order of sent packets. We consider push-out buffers, where

the algorithm may eject packets from anywhere in the buffer. The best lower bound on the competitive ratio of on-line

algorithms for buffer management is approximately 1.28. In this paper we present an on-line algorithm whose com-

petitive ratio is approximately 1.30 for the worst case a. The best previous general upper bound was about 1.888.

� 2003 Elsevier Science B.V. All rights reserved.

Keywords: Buffer overflows; Competitive analysis; Quality of Service; Throughput; Classes of service

1. Introduction

Buffers can be found in almost all computer

systems: they serve as a basic coupling component

that enables communication without rigid syn-
chronization. Packets enter with one traffic char-

acteristic, and leave with another. The existence

and importance of buffers is more pronounced in

data communication networks, where buffers are

found essentially in each connection point: a

computer�s network adapter (NIC), a switch�s in-

terface (port), etc. In most settings the buffers are

required to adhere to FIFO ordering as part of the
correctness specifications.

In many cases, the traffic into and out of the

buffer obeys certain known restrictions that allow

the designer to choose a buffer that will accom-

modate all possible scenarios (e.g., leaky bucket

constrained traffic [6]). In many other cases, how-

ever, incoming traffic does not have a deterministic

upper bound, or, equivalently, the only upper
bounds known require more resources than avail-

able. In these cases a buffer management policy is

called for to handle overflow events. The simplest

qA preliminary version of the paper appeared in Proceedings

of the 21st ACM Symposium on Principles of Distributed

Computing, 2002.
* Corresponding author. Tel.: +972-3-640-7036; fax: +972-3-

640-5413.

E-mail addresses: zvilo@eng.tau.ac.il (Z. Lotker), boaz@

eng.tau.ac.il (B. Patt-Shamir).

1389-1286/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S1389-1286(03)00197-X

Computer Networks 42 (2003) 481–492

www.elsevier.com/locate/comnet

mail to: zvilo@eng.tau.ac.il


and most popular approach to overflow manage-

ment is ‘‘tail drop’’: new packets are dropped if

there�s no room in the buffer. If all packets are

equally important, this policy is good enough. The

situation is more interesting when different packets

have different values, as is the case when different
levels of service are to be supported. Let us give two

basic examples for different packet values. First,

there is the obvious scenario where each delivered

packet has a cash value: In the Internet, many

pricing mechanisms have been proposed (see, for

example, [5,8,14] and references therein), and one

of the basic approaches to pricing is a per-packet

fee. In the case of two levels of service, we may
assume that we have two packet prices: a ‘‘regular’’

packet of value 1, and a ‘‘valuable’’ packet of value

a > 1. Another scenario where a two-value model

seems to make sense is in the context of constrained

incoming streams: For example, in ATM some

incoming streams commit to a limiting traffic en-

velope. Packets––called ‘‘cells’’ in this context––

violating the constraint are marked (using the
cell loss priority bit). Since it is preferable to de-

liver even violating packets if possible, we may

assume that a packet complying with its traffic

descriptor has some intrinsic value a > 1, and other

(violating) packets have value 1, where the pa-

rameter a > 1 represents the ‘‘strictness’’ of the

system.

In this paper, we analyze a simple abstraction of
a buffer, that can be roughly described as follows.

We are given a buffer that can hold at most B
packets. In each time step, an arbitrary set

of packets arrives at the buffer, and at most one

packet may leave the buffer. Each packet p has

value vðpÞ 2 Rþ. We concentrate on the special

case where packets may have only two values: 1

and a > 1. The buffer management algorithm de-
cides which packets to drop from the buffer and

which packets to send. At each step, any packet

from among those currently stored in the buffer

and from among the newly arriving packets may

be dropped (this is the push out buffer model).

FIFO order must be maintained over the sent

packets, in the sense that if p arrived before q and

both are sent, then p is sent before q. (Note that
FIFO buffers ensure bounded delivery time for

packets that are not dropped.)

The goal of the algorithm is to maximize the

total value of delivered packets. We use competi-

tive analysis [3,17] to evaluate algorithm perfor-

mance. Specifically, the competitive ratio of an

algorithm alg is an upper bound, over all possible

arrival sequences, on the ratio of the value sent by
an optimal (off-line) algorithm to the value sent by

alg.
Let us summarize briefly some results directly

relevant to our work. First, note that if packet

values are in the range ½1; a�, then any work-con-

serving policy that does not drop packets while

there�e room in the buffer (including the tail-drop

policy) is a-competitive. 1 This is because all these
algorithms send the maximal possible number of

packets. It is straightforward to see that in some

cases, tail-drop actually sends only 1=a value of the

value sent by the optimal algorithm. On the other

hand, it is known that no deterministic on-line

algorithm can have competitive ratio smaller than

1.28 [15,18]. The lower bound is proved using two

packet values. The most natural buffer manage-
ment policy is the greedy policy, that drops the

cheapest packets when an overflow occurs. Man-

sour et al. [15] give a relatively simple proof that

the greedy policy is 4-competitive. Kesselman et al.

[9] give a much more subtle proof that shows that

the competitive ratio of the greedy policy is in fact

2� 2=ðaþ 1Þ, for any packet values in the range

½1; a�. It is also shown in [9] that the ‘‘greedy head-
drop’’ policy (the greedy algorithm which prefers

dropping old packets in case of a tie) is the best

greedy policy. For the model of two possible val-

ues f1; ag, Kesselman and Mansour [10] propose a

more ‘‘proactive’’ algorithm with competitive ratioffiffiffi
a
p

=ð
ffiffiffi
a
p
� 2Þ for a > 4. Combining the results of

the greedy algorithm with the latter, one gets an

algorithm with worst-case competitive ratio about
1.888 for any a in the two-value case.

Our results. In this work, we significantly re-

duce the competitive ratio of buffer manage-

ment for the two packet values model. We do it

with a new algorithm, whose competitive ratio is

1 An algorithm is called work-conserving if it always sends a

packet if there�s one available.

482 Z. Lotker, B. Patt-Shamir / Computer Networks 42 (2003) 481–492



http://isiarticles.com/article/6390

