
Production, Manufacturing and Logistics

The tree representation for the pickup and delivery traveling salesman problem with
LIFO loading

Yongquan Li a, Andrew Lim b, Wee-Chong Oon b, Hu Qin a,b,⇑, Dejian Tu c

a School of Management, Huazhong University of Science and Technology, No. 1037, Luoyu Road, Wuhan, China
b Department of Management Sciences, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Hong Kong
c Department of Computer Science, School of Information Science and Technology, Sun Yat-Sen University, Guangzhou, Guangdong, China

a r t i c l e i n f o

Article history:
Received 6 June 2010
Accepted 3 February 2011
Available online 10 March 2011

Keywords:
Traveling salesman
Pickup and delivery
Last-in-first-out loading
Tree data structure
Variable neighborhood search

a b s t r a c t

The feasible solutions of the traveling salesman problem with pickup and delivery (TSPPD) are commonly
represented by vertex lists. However, when the TSPPD is required to follow a policy that loading and
unloading operations must be performed in a last-in-first-out (LIFO) manner, we show that its feasible
solutions can be represented by trees. Consequently, we develop a novel variable neighborhood search
(VNS) heuristic for the TSPPD with last-in-first-out loading (TSPPDL) involving several search operators
based on the tree data structure. Extensive experiments suggest that our VNS heuristic is superior to
the current best heuristics for the TSPPDL in terms of solution quality, while requiring no more comput-
ing time as the size of the problem increases.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The traveling salesman problem with pickup and delivery
(TSPPD) has been extensively studied by a large number of
researchers (e.g., Kalantari et al., 1985; Healy and Moll, 1995; Re-
naud et al., 2000; Renaud et al., 2002; Dumitrescu et al., 2009).
In the TSPPD, there is a set of n requests, denoted by R = {1, . . .,n},
each of which is composed of a pickup vertex and a delivery vertex.
Let P = {1+, . . .,n+} be the set of pickup vertices and D = {1�, . . .,n�}
be the set of delivery vertices. Vertices 0+ and 0� represent the exit
from and the entrance to the depot, respectively. The TSPPD is de-
fined on a complete and undirected graph G = (V,E,d), where
V = P [D [{0+,0�} is the vertex set; E = {(x,y):x,y 2 V,x – y} is the
edge set; and d(x,y) denotes the non-negative distance between
vertices x and y. The objective of the TSPPD is to find a shortest
Hamiltonian tour on G, starting from vertex 0+ and ending at vertex
0�, for a vehicle with unlimited capacity, subject to the precedence
constraints that each pickup vertex is visited before its associated
delivery vertex. In most of the existing literature on the TSPPD, fea-
sible solutions are represented by lists (or sequences) of vertices
complying with the precedence constraints.

This study addresses a variant of the TSPPD in which loading
and unloading operations must be performed in a last-in-first-
out (LIFO) manner; this problem is referred to as the TSPPD
with LIFO loading (TSPPDL). It models the fact that the storage
units of most transport vehicles have only a single door located
at the rear, and therefore the goods that are first picked up
must be stored towards the front of the vehicle (away from
the door). As a consequence, the last goods picked up should
be the first ones unloaded. The LIFO constraints are especially
applicable when transporting bulky items, or when the amount
of handling must be minimized during the transport of hazard-
ous materials.

The TSPPDL has been considered a more complex problem
than the TSPPD because in order to judge whether a solution
that is represented as a vertex list is feasible, we have to check
not only the precedence constraints, but also the LIFO con-
straints. In this paper, we show that there is a one-to-one corre-
spondence between feasible solutions of the TSPPDL and tree
representations of such solutions. This tree data structure
embodies the nature of the TSPPDL solutions and greatly simpli-
fies this seemingly complicated problem. As a result, we were
able to build upon the Variable Neighbourhood Search (VNS)
heuristic proposed by Carrabs et al. (2007b), which is the best
existing approach for the TSPPDL at the time of this writing,
by both reproducing five of the original operators using the tree
representation as well as introducing three new operators.
Extensive experiments show that our new heuristic outperforms
the original one in terms of solution quality, and it also requires

0377-2217/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2011.02.008

⇑ Corresponding author at: School of Management, Huazhong University of
Science and Technology, No. 1037, Luoyu Road, Wuhan, China. Tel.: +852
67964841; fax: +852 34420189.

E-mail addresses: liyongquan@mail.hust.edu.cn (Y. Li), lim.andrew@cityu.edu.hk
(A. Lim), weecoong@cityu.edu.hk (W.-C. Oon), tigerqin@cityu.edu.hk (H. Qin),
tudejian@gmail.com (D. Tu).

European Journal of Operational Research 212 (2011) 482–496

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://dx.doi.org/10.1016/j.ejor.2011.02.008
mailto:liyongquan@mail.hust.edu.cn
mailto:lim.andrew@cityu.edu.hk
mailto:weecoong@cityu.edu.hk
mailto:tigerqin@cityu.edu.hk
mailto:tudejian@gmail.com
http://dx.doi.org/10.1016/j.ejor.2011.02.008
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

comparatively less computation time as the number of requests
in the problem increases.

2. Existing research

The TSPPDL is a difficult combinatorial optimization problem
that combines a routing problem with loading constraints (Iori
and Martello, 2010). It was first mentioned by Ladany and Mehrez
(1984). However, they neither formulate it into a mathematical
model nor propose solution procedures except for enumeration,
which can be viewed as the simplest exact algorithm.

Carrabs et al. (2007a) introduced a branch-and-bound algo-
rithm that applies an additive lower bound technique proposed
by Fischetti and Toth (1989) to generate lower bounds. To further
improve the quality of the lower bounds, at each node of the
branch and bound search tree a set of elimination rules is utilized
to remove from the graph edges that are impossible to be part of
any feasible solution due to the precedence relationships. Experi-
mental results showed that this branch-and-bound algorithm is
capable of solving all instances with 15 requests and several in-
stances with 21 requests.

Currently, the best exact algorithm for the TSPPDL is the
branch-and-cut algorithm described by Cordeau et al. (2010). This
algorithm was constructed based on the fundamental component
from the commercial integer programming solver ILOG CPLEX
and employs several families of valid inequalities. Computational
results showed that it is able to handle most instances with up
to 17 requests in less than 10 minutes, and several instances with
25 requests within 1 hour.

For the generation of near-optimal solutions for the large in-
stances widely encountered in practice, the best approaches so
far have made use of efficient heuristics. An early approach by
Pacheco (1997) employed a simulated annealing algorithm for this
problem. Cassani and Righini (2004) developed a greedy heuristic
and a variable neighborhood descent (VND) heuristic which com-
bines four types of exchange operators, known as couple-exchange,
block-exchange, relocate-block and relocate-couple. Carrabs et al.
(2007b) built on this work by devising a variable neighborhood
search (VNS) heuristic which includes the four exchange operators
along with four new operators: multi-relocate, 2-opt-L, double-
bridge and shake. They compared the VND and VNS heuristics by
solving instances with up to 375 requests; the computational re-
sults showed that at the expense of more computing time, the
VNS heuristic produces significantly better solutions than the
VND heuristic. All of these implementations represented feasible
solutions of the TSPPDL by vertex lists.

3. The tree representation of feasible tours

In this section, we describe the tree representation of feasible
tours for the TSPPDL, which is the primary contribution of this
study. In particular, a feasible tour for the TSPPDL can be repre-
sented as an ordered tree (i.e., there is an order for the children
of each tree node) with jRj + 1 nodes, where the root node is la-
beled 0 and the remaining nodes are labeled {1, . . ., jRj} in some per-
mutation; we call a tree of this type a TSPPDL tree. We show that by
representing solutions using this tree, the feasibility of the solution
is automatically guaranteed. We also show that there is a one-to-
one correspondence between the set of all feasible solutions to
the TSPPDL and the set of all such trees.

Fig. 1(a) shows an example of a TSPDDL tree. The dashed arrows
in Fig. 1(b) pictorially shows how this ordered tree can be con-
verted into a tour that automatically respects the precedence and
LIFO constraints of the TSPPDL, corresponding to the vertex list

given in Fig. 2; this is similar to a preorder traversal of the tree,
where the pickup vertex is instantiated when its node is first
encountered, and the delivery vertex is instantiated when the node
is last encountered. The conversion procedure is provided in Algo-
rithm 1, which runs in O(n) time. Note that any TSPPDL subtree has
the property of a ‘‘no-crossing’’ (Volchenkov, 1982) or a ‘‘nested
palindrome’’ (Cordeau et al., 2010).

Algorithm 1. Procedure for converting a TSPPDL tree into a feasible
tour

1: INPUT: An ordered tree T;
2: Initialize the current node x node 0;
3: Initialize the current tour S ;;
4: Execute recursive procedure DFS(T,S,x), defined as:
5: DFS(T,S,x)
6: {Append x+ to the tail of S;
7: while node x has unvisited children
8: y the leftmost unvisited child of node x;
9: Invoke DFS(T,S,y);
10: end while
11: Append x� to the tail of S; }
12: Return S;

We now define some terminology and notations that we will
employ in this paper. In standard graph terminology, the terms
node and vertex have the same meaning and are used interchange-
ably. However, in this study we distinguish between the two
terms: we specify that node refers to a TSPPDL tree node corre-
sponding to a request in R, and vertex refers to the pickup or deliv-
ery vertex in V. We also define a tour as the vertex list representing
a solution of the TSPPDL. Furthermore, we use the notation
TSx ; x 2 R to denote the subtree in T rooted at the node correspond-
ing to request x. Finally, for ease of discussion we will refer to
TSPPDL trees simply as trees.

Theorem 1. Let T be a TSPPDL tree. The tour generated from T using
Algorithm 1 is a feasible solution to the TSPPDL.

Proof. This is proved by dividing the set of feasible TSPPDL tours
into four cases and showing that any generated tour must fulfill
one of these cases. See Appendix A. h

Theorem 2. Algorithm 1 provides a one-to-one correspondence
between TSPPDL trees and feasible solutions of the TSPPDL.

Proof. We first show that the number of TSPPDL trees with n
nodes and the number of feasible TSPPDL solutions with n requests
are the same, and then show that Algorithm 1 implements an
injective function from the set of TSPPDL trees to the set of feasible
TSPPDL tours. See Appendix B. h

To convert a feasible tour into a tree, a reverse procedure is pre-
sented in Algorithm 2, which is the inverse of Algorithm 1 and also
runs in O(n) time. These algorithms are linear time procedures that
convert a TSPPDL tree into a feasible tour and vice versa, so there is
at most a linear time difference between two approaches that use
either representation.

Algorithm 2. Procedure for converting a feasible tour into a
TSPPDL tree

1: INPUT: A feasible tour S;
2: Let node(v) be the node associated with vertex v 2 S;

Y. Li et al. / European Journal of Operational Research 212 (2011) 482–496 483

http://isiarticles.com/article/6401

