High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design

Giovanni Manente

Department of Industrial Engineering, University of Padova, Via Venezia 1, 35131 Padova, Italy

Abstract

The integration of solar energy into natural gas combined cycles has been successfully demonstrated in several integrated solar combined cycles since the beginning of this decade in many countries. There are many motivations that drive investments on integrated solar combined cycles which are primarily the repowering of existing power plants, the compliance with more severe environmental laws on emissions and the mitigation of risks associated with large solar projects. Integrated solar combined cycles are usually developed as brownfield facilities by retrofitting existing natural gas combined cycles and keeping the existing equipment to minimize costs. In this work a detailed off-design model of a 390 MWe three pressure level natural gas combined cycle is built to evaluate different integration schemes of solar energy which either keep the equipment of the combined cycle unchanged or include new equipment (steam turbine, heat recovery steam generator). Both power boosting and fuel saving operation strategies are analyzed in the search for the highest annual efficiency and solar share. Results show that the maximum incremental power output from solar at design solar irradiance is limited to 19 MWe without modifications to the existing equipment. Higher values are attainable only including a larger steam turbine. High solar radiation-to-electrical efficiencies in the range 24–29% can be achieved in the integrated solar combined cycle depending on solar share and extension of tube banks in the heat recovery steam generator. Compared to power boosting, the fuel saving strategy shows lower thermal efficiencies of the integrated solar combined cycle due to the efficiency drop of gas turbine at reduced loads. Without modifications to the existing equipment the maximum solar share of the total generated electricity is only about 1%.

1. Introduction

Several integrated solar combined cycles (ISCCs) are in operation all around the world (North Africa, Iran, Italy, USA) and many projects are underway (Mexico, China, USA), as reviewed in [1]. ISCCs offer many advantages compared to solar thermal power plants, primarily associated with the higher solar energy conversion efficiency and the lower investment costs [2]. Investors and owners are attracted by the mitigated risk associated with the construction of smaller solar fields compared to solar thermal power plants [3].

Many papers have appeared since the late nineties [4] about the thermodynamic analysis of ISCCs focusing on the optimum integration point of solar energy into the combined cycle. Kelly et al. [5] demonstrated that the most efficient way for converting solar thermal energy into electricity is to withdraw feed water from the heat recovery steam generator (HRSG) downstream of the last economizer, to produce high pressure saturated steam and to return the steam to the HRSG for superheating and reheating. Rovira et al. [6] end up with the same conclusion finding that the highest incremental solar thermal-to-electrical efficiency (44.6%) is achieved when solar heat is used for the evaporation process and eventually for superheating, but not for preheating feed water. Li and Yang [7] proposed a novel ISCC where both high and low pressure saturated steam are generated from solar to increase the solar share. This system was found to reach high solar radiation-to-electrical efficiency (up to 30%) due to the improvement of the thermal match in the HRSG. Montes et al. [8] considered a 50 MWth hybridization size in a 220 MWe natural gas combined cycle (NGCC) with the preheating and boiling processes directly accomplished in the parabolic trough collectors. The incremental electricity from solar compensated the gas turbine power drop at high ambient temperatures. Baghernejad and Yaghoubi [9] quantified the exergy destruction in all plant subsystems and found that the least efficient component is the solar collector. Libby et al. [10] showed that the highest thermodynamic performance is obtained...
Nomenclature

\begin{itemize}
 \item \(A\) heat transfer area, \(m^2\)
 \item \(\text{ANI}\) aperture normal irradiance, \(W/m^2\)
 \item \(\text{LMTD}\) log-mean temperature difference, \(K\)
 \item \(m\) mass flow rate, \(kg/s\)
 \item \(p\) pressure, \(bar\)
 \item \(q\) heat load, \(kW\)
 \item \(T\) temperature, \({}^\circ C, K\)
 \item \(U\) overall heat transfer coefficient, \(W/(m^2 K)\)
 \item \(W\) power output, \(kW\)
\end{itemize}

Greek symbols

\begin{itemize}
 \item \(\phi\) flow function
 \item \(\eta\) efficiency
 \item \(\rho\) density, \(kg/m^3\)
 \item \(\Delta T_{\text{min}}\) minimum temperature difference, \(^\circ C\)
 \item \(\Delta W\) power output difference, \(kW\)
\end{itemize}

Subscripts

\begin{itemize}
 \item \(\text{amb}\) ambient
 \item \(\text{coll}\) solar collector
 \item \(\text{corr}\) corrected
 \item \(\text{DP}\) design point
 \item \(\text{EXG}\) exhaust gases
 \item \(\text{in}\) inlet
 \item \(\text{incr}\) incremental
 \item \(\text{out}\) outlet
\end{itemize}

with solar steam generated at the highest temperature and pressure and fed upstream the high pressure turbine. Peterseim et al. [11] compared different concentrating solar power (CSP) technologies (parabolic trough, linear Fresnel and solar tower) for integration of 80 MWth from CSP into a 200 MWel NGCC on the basis of various criteria related to feasibility, risk, environmental impact and levelized cost of electricity (LCOE). They found that Fresnel solar collectors ranked best followed by parabolic troughs using thermal oil as heat transfer fluid.

The higher conversion efficiency of solar energy in ISCCs in combination with the equipment shared with the NGCC results in a lower solar LCOE compared to solar thermal power plants [18] in so-called “solar aided coal-fired power generation systems” (SACPGS), which enables high solar-to-electricity conversion efficiencies as well. Peng et al. [19] analyzed the hybridization of a 330 MWel coal-fired power plant where a solar-driven feed water heater is added in parallel with the last preheater to reduce the extraction from the steam turbine. They found that the solar radiation-to-electrical efficiency can reach 27.3% (1.4%-points higher than the solar thermal power plant) and that the LCOE can be reduced to 12.6–15.8 €/kW h, about 20–30% lower than solar thermal power plants.

The main limitation in both ISCCs and SACPGS is the low solar share achievable. A concept to increase the solar share is to collocate CSP facilities with simple-cycle gas turbines which transfer the exhaust heat to the heat transfer fluid of the solar plant [20]. Guédez et al. [21] evaluated the performance of such a plant including a 100 MWw gas turbine and a 60 MWw molten-salt solar tower with storage and calculated LCOE values for the total plant in the range 11.0–12.2 €/MW h. A higher solar share up to 90% [22] is achievable when solar energy is integrated in the topping part of a NGCC to preheat compressed air ahead of the combustion chamber, an integration scheme that has already demonstrated technical feasibility in the Solugas project [23].

The development of several ISCCs projects, in a country like Italy, having a high natural gas consumption and a high availability of solar energy can represent an important step for a gradual abatement of CO2 emissions in the generation sector, and for the promotion of cost-effective CSP technologies. The optimization of the annual performance and the selection of a proper design point are critical for the economics of such systems. Combined cycles with solar integration often operate at off-design conditions due to the intrinsic variable nature of solar energy and because of retrofit schemes searching for minimum modifications to the existing equipment (steam turbines, HRSG). Thus, to check both feasibility
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات