Numerical assessment of the static and seismic behaviour of the basilica of Santa Maria all'Impruneta (Italy)

Michele Betti *, Andrea Vignoli 1
Dept. of Civil and Environmental Engineering, University of Florence, I-50139 Florence, Italy

1. Introduction

The paper discusses the static behaviour and the seismic vulnerability of the Basilica of Santa Maria all’Impruneta near Florence (Italy). The static structural behaviour and the dynamic properties of the church have been evaluated using the finite element modelling technique, whereas the nonlinear behaviour of masonry has been taken into account by proper constitutive assumptions. A macro-modelling approach has been used based on the concepts of homogenised material and smeared cracking and crushing constitutive law. Seismic vulnerability has been evaluated using a pushover method, and the results obtained with the nonlinear numerical model have been compared with the simplified schemes of limit analysis. The capacity of the church to withstand lateral loads is evaluated together with the expected demands resulting from seismic actions. The comparison of seismic demand vs. capacity confirms the susceptibility of this type of buildings to extensive damage and collapse, as frequently observed in similar buildings. The paper’s aim was to point out that advanced numerical analyses can offer significant information on the understanding of the actual structural behaviour of historic buildings. The methodology and the conclusions of this case study it is believed that are applicable to a wide variety of historic Basilica churches.

© 2010 Elsevier Ltd. All rights reserved.
an exemplary case study Lourenço et al. [8] approach the structural safety assessment the Monastery of Jeronimos in Lisbon (Portugal). Through the discussion of the case study the authors stress how the results obtained from advanced numerical simulations in historic structures are usually important for the understanding of the structural behaviour. The paper demonstrates that numerical models can also be used as a numerical laboratory where the sensitivity of the results to input material parameters, boundary conditions and actions can be efficiently analysed, offering invaluable information in the conception and understanding of in situ testing and structural monitoring. A Romanesque church, the abbey of Farneta near Cortona (Italy), has been analysed by Betti and Vignoli [9]. To assess the seismic vulnerability of the ancient building the authors built a 3D numerical model designed to develop linear and non linear analyses. The numerical model has been used to evaluate the seismic vulnerability of the Romanesque church and the efficiency of traditional strengthening techniques. Taliercio and Binda [10] analyse the Basilica of San Vitale in Ravenna (Italy), a Byzantine building which suffers diffused cracking and excessive deformation. The authors, taking into account the results of in situ topographical and mechanical investigation, built a complete finite element model of the Basilica that has been conceived as a first step toward the understanding of the structural behaviour of the fabrica. The ability of the finite element modelling technique to assess and to interpret the structural behaviour of historic constructions has been showed recently by Ivorra et al. [11]. The authors assess the seismic behaviour of the San Nicolas bell tower in Valencia (Spain). The numerical model was first calibrated by means of dynamic tests performed directly on the real structure and next used to obtain the seismic response and its relationship to the seismic Spanish standard. The numerical simulations showed a satisfactory performance of the tower. Discussing the cracking pattern in a historic Italian palace, Betti et al. [12] show a careful use of numerical analyses when dealing with practical engineering problems. Through the use of the finite element technique the authors provide an interpretation of the manifested damage in the palace, and the results of the numerical analyses have been used to design an extensive in situ investigation on the building. Ivorra et al. [13] report a study carried out on the bell tower of the Church of Santas Justa and Rufina in Orihuela in Alicante (Spain). After the model calibration, based on the dynamic characteristics of the tower in free vibration, the model has been used to predict the evolution of the dynamic behaviour of the bell tower taking into account the subsidence caused by variations in water table levels.

Within this field of research the present study discusses an even more illustrative case study. To analyse the structural behaviour of the Basilica of Santa Maria all’Impruneta a double approach has been proposed. Firstly a global analysis of the church has been made by using the finite element modelling technique. Specific assumptions on the material properties and on the non linear behaviour of masonry (nonlinear behaviour both in tension with low tensile capacity and consequent cracking phenomena and in compression) have been made to appraise the general properties of the building’s structural response. In particular, static nonlinear analyses under vertical loads (dead and live loads) have been made, and pushover analyses to assess the seismic vulnerability of the Basilica have been considered. Secondly, the simplified scheme of limit analysis, considering several significant architectural elements of the building, has been considered. With reference to the mechanisms activated on similar buildings during past earthquakes [1,14], some elementary macro-elements were
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات