Optimal risk management in defined benefit stochastic pension funds

Ricardo Josa-Fombellida, Juan Pablo Rincón-Zapatero

Abstract

We consider a continuous time dynamic pension funding model in a defined benefit plan of an employment system. The benefits liabilities are random, given by a geometric Brownian process. Three different situations are studied regarding the investment decisions taken by the sponsoring employer: in the first, the fund is invested at a constant, risk-free rate of interest; in the second, the promoter invests in a portfolio with n risky assets and a risk-free security; finally, it is supposed that the rate of return is stochastic. Modelling the preferences of the manager such that the main objective is to minimize both the contribution rate risk and the solvency risk, we study cases where the optimal behavior leads to a spread method of funding.

Keywords: Defined benefit pension fund; Contribution rate risk; Solvency risk; Asset allocation; Stochastic control

1. Introduction

The dynamically optimal management of defined benefit pension plans has considerable economic interest, due to the great importance that the world of pensions provision has acquired in financial markets.

In this paper we analyze the optimal contribution rate and asset allocation decisions for a manager of a defined benefit pension plan who wishes to keep the fund as close as possible to prescribed targets. These targets are fixed by actuarial cost methods, allowing an ideal contribution rate—the normal cost—and an ideal fund level—the actuarial liability—to be defined. These ideal levels guarantee the benefits promised to members incorporated to the pension plan over time. However, the existence of uncertainty in some elements of the plan or in the rate of return of the...
The supplementary cost must be the normal cost modified by a suitable supplementary cost reflecting the disturbances. The supplementary cost is chosen by the promoter with the aim of bringing the expected value of the unfunded actuarial liability to zero. The instruments used by the manager to reach the objectives are the contribution rate and investment earnings.

Along the lines of Haberman (1993), Haberman and Sung (1994), Haberman (1997), Josa-Fombellida and Rincón-Zapatero (2001), we suppose that the aim of the controller is to minimize a combination of the contribution rate risk and the solvency risk. The former represents the size of deviation of contributions from the normal cost and is related with the stability of the plan. The latter risk is an indicator of the plan’s safety, measuring deviations of the fund from the actuarial liability. The model is considered on an unbounded horizon and with a positive discount rate, meaning that the sponsor is more worried about the short-term than with the long run behavior of the fund.

Josa-Fombellida and Rincón-Zapatero (2001) considered the case of a constant value for the benefits, in a context closely related with the framework pioneered by Merton (1971) for optimal consumption and portfolio selection. That paper found that the optimal behavior of the controller leads to a spread method of funding if the technical rate of actualization of the actuarial liability equals the risk-free rate of return. With a spread method the supplementary cost is proportional to the unfunded actuarial liability, in such a way that the corrections made in the rate of contribution to the normal cost are small when the fund is close to the target. Furthermore, it enjoys good stability properties. This is why spread methods have became popular with professionals and institutional agents.

Haberman and Sung (1994) considered a similar model in discrete time, on a finite horizon both in deterministic and stochastic frameworks. These authors do not contemplate investment as an instrumental variable, but all the fund assets are invested at a random rate of return. Another difference with our paper is that they consider constant benefits, whereas in our case we allow stochastic benefits.

Our paper contemplates three different situations which are studied regarding the investment decisions taken by the sponsoring employer: (i) in the first, the fund is invested at a constant rate of interest; (ii) the promoter invests in a portfolio with \(n \) risky assets and a risk-free security; (iii) finally, it is supposed that the rate of return is stochastic. Note that the benefits are a non-tradable process, hence the market is incomplete and, furthermore, we also consider the existence of correlation between the sources of uncertainty in the benefits and in the asset returns. However, the consideration of the benefits as geometric Brownian motion is fundamental to our approach. The problem is solved under particular assumptions-depending on the scenario-concerning the technical rate of actualization and the evolution of the liabilities. These hypotheses are motivated by our intention to show that spread methods lead to a minimization of risk in pension funding, even in a stochastic environment.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات