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a b s t r a c t

Flow networks are inductively defined, assembled from small components to produce
arbitrarily large ones, with interchangeable functionally-equivalent parts. We carry out
this induction formally using a domain-specific language (DSL). Associated with our DSL
are a semantics and a typing theory. The latter gives rise to a system of formal annotations
that enforce desirable properties of flow networks as invariants across their interfaces. A
prerequisite for a typing theory is a formal semantics, i.e., a rigorous characterization of
flows that are safe for the network (limited to the notion of feasible flows in this paper,
unfeasible flows being considered unsafe).We give a detailed presentation of a denotational
semantics only, but also point out the elements that an equivalent operational semantics
must include.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and motivation

The background leading to the research reported herein is a little unusual. The motivation comes from the modeling
and analysis of software systems that are assembled in an incremental and modular way. We devote some space in this
introduction to explain this background.

Flow networks. Many large-scale, safety-critical systems can be viewed as interconnections of subsystems, or modules,
each of which is a producer, consumer, or regulator of flows. These flows are characterized by a set of variables and a set
of constraints thereof, reflecting inherent or assumed properties or rules governing how the modules operate and what
constitutes safe operation. Our notion of flow encompasses streams of physical entities (e.g., vehicles on a road, fluid in
a pipe), data objects (e.g., sensor network packets, video frames), or consumable resources (e.g., electric energy, compute
cycles).

Traditionally, the design and implementation of such flow networks follows a bottom-up approach, enabling system
designers to certify desirable safety invariants of the system as a whole: Properties of the full system depend on a complete
determination of the underlying properties of all subsystems. For example, the development of real-time applications
necessitates the use of real-time kernels so that timing properties at the application layer (top) can be established through
knowledge and/or tweaking ofmuch lower-level systemdetails (bottom), such asworst-case execution or context-switching
times [1–3], specific scheduling and power parameters [4–7], among many others.

While justifiable in some instances, this vertical approach does not lend itself well to emerging practices in the assembly
of complex large-scale systems – namely, the integration of various subsystems into a whole by ‘‘system integrators’’ who
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may not possess the requisite expertise or knowledge of the internals of these subsystems [8]. This latter alternative can be
viewed as a horizontal and incremental approach to system design and implementation, which has significant merits with
respect to scalability and modularity. However, it also poses a major and largely unmet challenge with respect to verifiable
trustworthiness – namely, how to formally certify that the system as a whole will satisfy specific safety invariants and to
determine formal conditions under which it will remain so, as it is augmented, modified, or subjected to local component
failures.

Incremental and modular design. Several approaches to system design, modeling and analysis have been proposed in
recent years, overlapping with our notion of flow networks. Apart from the differences in the technical details – at the level
of formalisms andmathematics that are brought to bear – our approach distinguishes itself from the others by incorporating
from its inception three inter-related features/goals: (A) the ability to pursue system design and analysis without having to
wait for missing (or broken) components to be inserted (or replaced), (B) the ability to abstract away details through the
retention of only the salient variables and constraints at network interfaces aswe transition from smaller to larger networks,
and (C) the ability to leverage diverse, unrelated theories to derive properties of components and small networks, as long as
such networks share a common language at their interfaces – a strongly-typed domain-specific language (DSL) that enables
assembly and analysis that is agnostic to components’ internal details and to theories used to derive properties at their
interfaces.

Our DSL provides two primitive constructors, one is of the form

M1 ∥ M2


and the other of the form bind (N , ⟨a, b⟩).

The first juxtaposes two networks M1 and M2 in parallel, and the second binds an output port a to an input port b in a
network N . With these two primitive constructors, we define others as derived and according to need. A distinctive feature
of our DSL is the presence of holes in network specifications, together with constructs of the form: (let X = M in N ), which
says ‘‘network M may be safely placed in the occurrences of hole X in network N ’’. What ‘‘safely’’ means, depends on the
invariant properties that typings are formulated to enforce. There are other useful constructs involving holes which we
discuss later in the paper.1

Types and formal semantics. Associated with our DSL is a type theory, a system of formal annotations to express desirable
properties of flow networks together with rules that enforce them as invariants across their interfaces, i.e., the rules
guarantee the properties are preserved as we build larger networks from smaller ones.

A prerequisite for a type theory is a formal semantics, i.e., a rigorous definition of the entities that qualify as safe flows
through the networks. There are standard approaches which can be adapted to our DSL, one producing a denotational
semantics and another an operational semantics. In the first approach, a safe flow through the network is denoted by a
function, and the semantics of the network is the set of all such functions. In the second approach, the network is uniquely
rewritten to another network in normal form (appropriately defined), and the semantics of the network is its normal form or
directly extracted from it.We give a detailed presentation of the denotational approach only, but also point out the elements
that an equivalent operational approach must include, so that an equivalence can be established between the two.

We prefer the denotational approach for several reasons, one of which being to avoid an exponential growth in the
size of network specifications when rewritten to normal form in the operational approach. We thus prove the soundness
of the typing system (‘‘a type-safe network construction guarantees that flows through the network satisfy the invariants
properties enforced by types’’) without having to explicitly carry out exponential-growth rewriting.

Paper organization and scope. Section 2 is devoted to preliminary definitions. Section 3 introduces the syntax of our DSL
and lays out several conditions for the well-formedness of network specifications written in it. Section 4 defines the formal
semantics of flow networks. Sections 5–7 present a type theory based on the syntax and semantics of the preceding sections.

For illustrative purposes, we consider only one safety property – namely, to be safe, a flow must satisfy (1) linear
constraints of flow conservation at nodes/hubs and (2) linear capacity constraints that restrict the range of permissible values
along links/connections between nodes/hubs. Types and typings are then formulated precisely to enforce this kind of safety
across interfaces.

This paper presents the bare bones of a relatively small DSL for the purpose at hand. The concluding section, Section 8,
discusses various extensions of the syntax, the semantics, and the invariant properties that a type theory may enforce.

The technical background presumed by the paper is familiarity with standard formalisms to define the syntax and
semantics of programming languages (e.g., the textbooks [13–15] among others), familiarity with conventions and notions
of type systems for programming languages (again the textbooks [13–15]), and some knowledge of vector spaces up to
and including optimization of linear functions, using any of the standard algorithms for linear programming (e.g., the
textbooks [16–18]).

No implementation issues of any of the algorithms, whether directly formulated or invoked, are taken up in this paper.
In particular, we leave an analysis of time and space requirements to a subsequent report.

1 Holes as placeholders have been used in other formal environments for design and analysis, such as in Susan (a text templating language tied to the
object-oriented modeling languages Modelica and MetaModelica [9–12]). However, these other uses of holes are different from ours in several respects.
In particular, they do not involve types and typings that set conditions at hole interfaces/boundaries that must be satisfied for safe placement in the holes.
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