Resource depletion under uncertainty: implications for mine depreciation, Hartwick’s Rule and national accounting

David W. Butterfield∗

Department of Economics, McMaster University, 1280 Main Street West, Hamilton, Ont., Canada L8S 4M4

Received 20 October 2000; received in revised form 5 March 2002; accepted 5 August 2002

Abstract

Lozada’s equation [Resource and Energy Economics 17 (1995) 137] for the change in value of a non-autonomous dynamic program is generalized to stochastic control and applied to the depreciation of a competitive mine facing price, reserve and discount rate uncertainty. Mine depreciation includes the costs of these risks, as well as an adjustment to the ‘net price’ used to value depletion and revisions. The change in value equation also provides the basis for a stochastic version of Hartwick’s Rule [American Economic Review 67 (1977) 972] for sustainable consumption, that the risk adjusted value of net investment equal zero. The analysis has implications for the Weitzman [Quarterly Journal of Economics 90 (1976) 156] welfare measure and the stochastic Hamiltonian. © 2002 Elsevier Science B.V. All rights reserved.

JEL classification: C61

Keywords: Stochastic control; Mine depreciation; Hartwick’s Rule; National accounting

1. Introduction

Interest in sustainable development and the integration of natural resources into national accounts has stimulated the search for theoretically correct measures of natural resource depletion. Empirical studies (Foy, 1991; Bartelmus et al., 1993; Tengblad, 1993; Smith, 1994; US, 1994; Diaz and Harchaoui, 1997) have experimented with a variety of approaches to measuring the depletion of non-renewable resources. Early theoretical discussions of measuring non-renewable resource depletion include Landefeld and Hines (1985), El Serafy (1989), and Hartwick (1990). Lozada (1995) developed a general equation for the change
in the value-function of a non-autonomous dynamic program, which he used to derive an
equation for mine depreciation. Vincent et al. (1997) derived a special case of Lozada’s result
in their analysis of Hartwick’s Rule in a small resource-exporting economy. Hartwick and
Long (1999) also derive Lozada’s equation as a part of their analysis of Hartwick’s Rule
in non-autonomous models. Cairns (2000) derives a version of the Lozada’s equation for a
model of the competitive mine in which the size of the initial capital investment implies a
constraint on the capacity of the mine.

Lozada (1995) applies his equation to the problem of optimal extraction by a competitive
mine, which is a non-autonomous problem because the price of the extracted resource is
exogenous and changes over time. Lozada’s equation assumes perfect foresight so that the
future price profile of the extracted resource is known with certainty. However, both theo-
retical studies of mineral extraction and empirical valuation of mineral deposits emphasize
the effects of uncertainty about future prices (Pindyck, 1981; Brennan and Schwartz, 1985;
Dias and Rocha, 1999) and the size of the remaining resource stock (Pindyck, 1980) on the
extraction decision and on the value of the mine. Crabbé (1982) provided an early sum-
mary of these sources of uncertainty and their implications for the theory of non-renewable
resource extraction. Thus, it is desirable to have an equation for mine depreciation which
takes these important uncertainties into account. This paper generalizes Lozada’s results
to stochastic non-autonomous control problems and to the theory of the competitive mine
under uncertainty. The following section presents the stochastic version of Lozada’s general
equation for the change in the value function and this result is applied to the competitive
mine in Section 3.

Lozada (1995) also points out that his equation implies a general version of Hartwick’s
(1977) Rule for sustainable development, which has been prominent in the literature on sus-
tainable development. Vellinga and Withagen (1996) and Asheim (1997) provide succinct
summaries of this literature. Here again, the presence of important uncertainties make it de-
sirable to have a stochastic version of Hartwick’s Rule, which is presented in Section 4. Of
course, a stochastic Hartwick’s Rule is only one of many ways to incorporate uncertainties
into the discussion of sustainable development.

Finally, the envelope equation for the current value Hamiltonian, which provides the
basis for Lozada’s result, also provides the basis for the theory of national accounting. In
Section 5, the implications of the stochastic version of the envelope equation for the theory
of national accounting, first considered by Aronsson and Löfgren (1995), are discussed.

2. The change in the value function of a non-autonomous stochastic control problem

One formulation of the stochastic control problem (see Fleming and Rishel, 1975; or
Fleming and Soner, 1992) may be stated as

\[
\max_{u(s)} E_t \left[\int_t^T f(x(s), u(s), s) \, ds + F(x(T)) \right]
\] \hspace{1cm} (1)

subject to

\[
dx(s) = g(x(s), u(s), s) \, ds + \sigma(x(s), u(s), s) \, dz(s)
\] \hspace{1cm} (2)
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات