Global and local pitch perception in children with developmental dyslexia

Johannes C. Zieglera,b,*, Catherine Pech-Georgelc, Florence Georgec, Jessica M. Foxtond

aPsychology Department, Aix-Marseille Universite, Marseille, FrancebLaboratoire de Psychologie Cognitive, Centre National de la Recherche Scientifique, Marseille, FrancecCentre de Referece pour les Troubles des Apprentissages, Centre Hospitalier Universitaire La Timone, Marseille, FrancedCentre de Recherche Cerveau & Cognition, Centre National de la Recherche Scientifique, Toulouse, France

Abstract

This study investigated global versus local pitch pattern perception in children with dyslexia aged between 8 and 11 years. Children listened to two consecutive 4-tone pitch sequences while performing a same/different task. On the different trials, sequences either preserved the contour (local condition) or they violated the contour (global condition). Compared to normally developing children, dyslexics showed robust pitch perception deficits in the local but not the global condition. This finding was replicated in a simple pitch direction task, which minimizes sequencing and short term memory. Results are consistent with a left-hemisphere deficit in dyslexia because local pitch changes are supposedly processed by the left hemisphere, whereas global pitch changes are processed by the right hemisphere. The present data suggest a link between impaired pitch processing and abnormal phonological development in children with dyslexia, which makes pitch pattern processing a potent tool for early diagnosis and remediation of dyslexia.

Introduction

Research on skilled reading suggests that global but not local pitch pattern perception is one of the strongest predictors of reading (Foxton et al., 2003). In their study, a strong correlation was found between global pitch perception and reading performance in skilled readers (i.e., university students). Thus, the primary goal of the present study was to investigate whether children with dyslexia would exhibit deficits in global but not local pitch perception.

On theoretical grounds, Foxton et al.’s (2003) finding is intriguing because contour (global pitch changes) and intervals (local pitch changes) are supposedly processed by asymmetrical and independent brain structures. The right hemisphere primarily represents melody in terms of its contour, and the left hemisphere in terms of its intervallic structure (Peretz, 1990; Peretz & Morais, 1987, but see Stewart, Overath, Warren, Foxton, & Griffiths, 2008). More generally, it has been suggested that local processing (i.e., sequential, analytic, relational) is preferentially located in the left hemisphere, whereas global processing (parallel, holistic, unitary) is preferentially located in the right hemisphere (Bever & Chirello, 1974; Justus & List, 2005). Given that reading is a left-hemisphere task (Shaywitz et al., 1998), it is somewhat surprising that global and not local pitch pattern perception was shown to be correlated with skilled reading.

However, it is well known that global pitch pattern perception is important for speech prosody (Morton & Jassem, 1965) and speech prosody is crucial for word segmentation and phonological development in infants (Jusczyk, 1999). Thus, impaired processing of stress location in speech would affect speech segmentation, and this in turn would affect the development of phonological skills that are important for literacy acquisition (Goswami et al., 2002; Muneaux, Ziegler, Truc, Thomson, & Goswami, 2004; for review see Goswami, 2011). Thus, an account of dyslexia that emphasizes the importance of speech prosody for accurate phonological development should predict deficits in global pitch pattern perception, whereas an account that emphasizes the fact that dyslexia has been linked to a left-hemisphere deficit (Galaburda, Menard, & Rosen, 1994; Shaywitz, Mody, & Shaywitz, 2006; Shaywitz et al., 1998) should predict deficits in local pitch pattern perception.

Early evidence in favor of the claim that local pitches and global contour is processed in different hemispheres was provided in a study where subjects classified successive melodies as “same” or “different” (Peretz & Morais, 1987). The contour of the melodies was violated on half of the trials. A clear facilitative effect of contour was observed with contour-violated melodies being better discriminated than contour-preserved (but interval-violated) melodies. Moreover, a left-ear advantage was obtained in the first case and a right-ear advantage in the second. Thus, when the global cue was not available for discrimination, such as with...
contour-preserved melodies, participants had to rely only on local
cues, and in this situation the left hemisphere appeared dominant.

Hemispheric specialization for local versus global pitch changes was also supported in neuropsychological studies, in which pa-
tients with unilateral brain lesions were presented with contour-
violated and contour-preserved (interval-violated) melodies in a
same-different classification task (Peretz, 1990). Patients with
left-hemisphere damage showed deficits in processing intervallic
structures (local violations), whereas patients with right-hemi-
sphere damage showed deficits in processing contour (global viola-
tions). Similar findings in favor of hemispheric specialization for
global and local processing has also been reported for visual stim-
uli (large letters made of small letters), where the right hemisphere
contributes more to the processing of global aspects of visual stim-
uli, whereas the left hemisphere contributes more to the process-
ing of the local components of visual stimuli (Fink et al., 1997;

Dissociations between global versus local pitch perception have
been reported in a variety of developmental disorders. For exam-
ple, high-functioning persons with autism perform better than
controls in the detection of interval-violated but contour-pre-
served melodies, a finding that has been taken as evidence for a
multi-modal abnormality in the integration of parts and whole in
individuals with autism (Mottron, Peretz, & Menard, 2000). Local
versus global processing abilities have also been assessed in chil-
dren with Williams syndrome, a rare genetic disorder character-
ized by a weakness in visuospatial, motor, and arithmetic skills
along with strengths in face perception, memory, sociability, and
selected aspects of language. The advantage that is typically found
for the perception of global configurations of visual stimuli was
found to be absent in children with Williams syndrome (Bihlre,
Bellugi, Delis, & Marks, 1989; Deruelle, Mancini, Livet, Casse-Per-
rot, & de Schonen, 1999). The same pattern was found in the audi-
tory modality (Deruelle, Schon, Rondan, & Mancini, 2005).

In the present study, we investigated global versus local pitch
pattern perception in children with developmental dyslexia and
in normally developing children. This is interesting for a number
of reasons. (1) Global pitch pattern perception is a potent predictor
of skilled reading (Foxton et al., 2003). (2) Previous research on
auditory processing deficits has neglected the role of pitch percep-
tion in favor of rapid temporal processing deficits (Ahissar, Protop-
apas, Reid, & Merzenich, 2000). (3) Global pitch pattern perception
is important for processing speech prosody, which seems to be im-
paired in dyslexia (Goswami, 2011). (4) Dyslexia is associated with
a left-hemisphere deficit, which would suggest a possible dissoci-
ation between deficits in local versus global pitch pattern percep-
tion. (5) The study of local versus global processing differences has
yielded important dissociations in other developmental disorders
(Deruelle et al., 2005; Mottron et al., 2000).

The present paradigm is modeled after Foxton et al. (2003). Sub-
jects were presented with two consecutive 4-tone melodies and
their task was to decide whether the melodies were the same or
different (see Fig. 1). On the different trials, differences were cre-
ated by randomly altering either the second or the third note such
that on half of the trials the change maintained the overall pattern
of rises and falls between the notes (i.e., contour-preserved),
whereas on the other half of the trials it changed the overall con-
tour (i.e., contour-violated trials). For the global sequences, this
change always violated the contour. The predictions were straight-
forward. If children with dyslexia were impaired in global process-
ing, no advantage for contour-violated over contour-preserved
melodies should be seen in children with dyslexia in the “differ-
et” trials. If children with dyslexia were impaired in local process-
ing, they should perform more poorly than normally-developing
children in the local than the global condition. Finally, because
making same-different judgments on two consecutive 4-tone mel-
odies is a rather complex task that involves sequencing and short-
term memory, we also added a simple pitch direction task in
Experiment 2, which allowed us to further explore potential defi-
cits in pitch pattern perception that cannot be attributed to mem-
ory, sequencing, or decision strategies.

2. Experiment 1

2.1. Methods

2.1.1. Participants

Fifteen dyslexic children (10.2 years old, range: 8.6–11.9) were
recruited from the University Hospital La Timone Marseille, France.
All dyslexics received a complete medical, psychological, neuro-
psychological, and cognitive assessment by an interdisciplinary
team of psychologists, neurologists, and speech therapists. Dyslex-
ics were included in the study if their reading age was at least
18 months below the age norm on a standardized reading test

<table>
<thead>
<tr>
<th>Global sequence task example (contour is violated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First sequence</td>
</tr>
<tr>
<td>Second sequence</td>
</tr>
<tr>
<td>‘same’</td>
</tr>
<tr>
<td>‘different’</td>
</tr>
<tr>
<td>250ms note</td>
</tr>
<tr>
<td>deviant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local sequence task example (contour is not violated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First sequence</td>
</tr>
<tr>
<td>Second sequence</td>
</tr>
<tr>
<td>‘same’</td>
</tr>
<tr>
<td>‘different’</td>
</tr>
<tr>
<td>250ms note</td>
</tr>
<tr>
<td>deviant</td>
</tr>
</tbody>
</table>

Fig. 1. Illustration of the global and local pitch change detection tasks.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات