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Abstract

A recursion principle, generalized iteration methods and the axiom of choice are applied to prove the existence of extremal
fixed points of set-valued mappings in posets, extremal solutions of an inclusion problem, and extremal Nash equilibria for a
normal-form game.
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1. Introduction

Let P be a non-empty partially ordered set (poset). As an introductory result we show that a set-valued mapping
F from P to the set 2P

\ ∅ of non-empty subsets of P has minimal and maximal fixed points, that is, the set Fix
F = {x ∈ P | x ∈ F(x)} has minimal and maximal elements, if the following conditions hold.

(c1) sup{c, y} ∈ P for some c ∈ P and for every y ∈ P .
(c2) If x ≤ y in P , then for every z ∈ F(x) there exists a w ∈ F(y) such that z ≤ w, and for every w ∈ F(y) there

exists a z ∈ F(x) such that z ≤ w.
(c3) Strictly monotone sequences of F[P] =

⋃
{F(x): x ∈ P} are finite.

As for the proof, denote x0 = c, and choose y0 from F(x0). If y0 6≤ x0, then x0 < x1 := sup{c, y0}. Apply then
condition (c2) to choose y1 from F(x1) such that y0 ≤ y1. If y0 = y1, then stop. Otherwise, y0 < y1, whence
x1 = sup{c, y0} ≤ x2 := sup{c, y1}, and apply again condition (c2) to choose y2 from F(x2) such that y1 ≤ y2.
Continuing in the similar way, condition (c3) ensures that after a finite number of choices we get the situation, where
yn−1 = yn ∈ F(xn). In view of the above construction we then have xn := sup{c, yn−1} = sup{c, yn}.

Denoting z0 := xn and w0 := yn then w0 ∈ F(z0) and w0 ≤ sup{c, w0} = z0. If w0 = z0, then z0 is a fixed point
of F . Otherwise, denoting z1 := w0, we have z1 < z0. In view of condition (c2) there exists a w1 ∈ F(z1) such that
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w1 ≤ w0. If equality holds, then z1 = w0 = w1 ∈ F(z1), so that z1 is a fixed point of F . Otherwise, w1 < w0, denote
z2 := w1, and choose by (c2) such a w2 ∈ F(z2) that w2 ≤ w1, and so on. Condition (c3) implies that a finite number
of steps yield the situation zm := wm−1 = wm ∈ F(zm). Thus zm belongs to Fix F . Being a subset of F[P], strictly
monotone sequences of Fix F are finite by condition (c3). This property implies in turn that Fix F has minimal and
maximal elements.

The above described result will be generalized in Section 3. For instance, we show thatF has minimal and maximal
fixed points when the above conditions (c1) and (c2) hold and condition (c3) is replaced by order compactness of the
values of F and relative chain completeness of its range F[P]. The obtained results are then used in Section 4 to
generalize existence results derived in [5–7] for inclusion problem Lu ∈ Nu, where L is a single-valued mapping from
a poset V to P , andN is a set-valued mapping from V to 2P

\∅. Finally, in Section 5 results of Section 3 are applied to
study the existence of extremal Nash equilibria for a normal-form game. Existence proofs require several consecutive
applications of a recursion principle and generalized iteration methods introduced in [4,8] and presented in Section 2.

2. Preliminaries

In this section P = (P, ≤) is a non-empty poset. When z ∈ P , denote

[z) = {x ∈ P : z ≤ x} and (z] = {x ∈ P : x ≤ z}.

We say that P , equipped with a topology is an ordered topological space if the order intervals [z) and (z] are closed
for each z ∈ P . If the topology of P is induced by a metric, we say that P is an ordered metric space.

We say that a subset W of P is well-ordered if every non-empty subset of W has the least element. A well-ordered
set is a chain, i.e. totally ordered.

A basis to our considerations is the following recursion principle (cf. [8, Lemma 1.1.1]).

Lemma 2.1. Given a subset D of 2P with ∅ ∈ D and a mapping f : D → P, there is a unique well-ordered chain C
in P such that

x ∈ C if and only if x = f (C<x ), where C<x
= {y ∈ C | y < x}. (2.1)

If C ∈ D, then f (C) is not a strict upper bound of C.

Hint to the proof. The well-ordered chains W of P whose elements satisfy x = f (W <x ) are nested, and C is their
union. �

As an application of Lemma 2.1 we get the following result (cf. [4, Lemma 2]).

Lemma 2.2. Given G : P → P and c ∈ P there exists a unique well-ordered chain C = C(G) in P, called a w.o.
chain of cG-iterations, satisfying

x ∈ C if and only if x = sup{c, G[C<x
]}. (2.2)

Proof. Denoting D = {W ⊂ P : W is well-ordered and sup{c, G[W ]} exists}, and defining f (W ) =

sup{c, G[W ]}, W ∈ D, we obtain a mapping f : D → P , and (2.2) is reduced to (2.1). Thus, by Lemma 2.1
there is a unique well-ordered chain C in P with (2.2). �

A subset W of a chain C is called an initial segment of C if x ∈ W and y < x imply y ∈ W . The following
application of Lemma 2.1 is also used in the sequel.

Lemma 2.3. Let F : P → 2P
\ ∅ and c ∈ P be given. Denote by G the set of all selections G from F , i.e.,

G := {G : P → P | G(x) ∈ F(x) for all x ∈ P}. (2.3)

For every G : P → P denote by CG the longest such an initial segment of the w.o. chain C(G) of cG-iterations that
the restriction G|CG of G to CG is increasing. Define a partial ordering ≺ on G as follows.

(O) F ≺ G if and only if CF is a proper initial segment of CG and G|CF = F |CF .

Then (G, �) has a maximal element.
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