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Abstract

A recursion principle, generalized iteration methods and the axiom of choice are applied to prove the existence of extremal
fixed points of set-valued mappings in posets, extremal solutions of an inclusion problem, and extremal Nash equilibria for a
normal-form game.
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1. Introduction

Let P be a non-empty partially ordered set (poset). As an introductory result we show that a set-valued mapping
F from P to the set 2 \ ¥ of non-empty subsets of P has minimal and maximal fixed points, that is, the set Fix
F ={x € P | x € F(x)} has minimal and maximal elements, if the following conditions hold.

(cl) sup{c, y} € P for some ¢ € P and for every y € P.

(c2) If x < y in P, then for every z € F(x) there exists a w € F(y) such that z < w, and for every w € F(y) there
exists a z € F(x) such that z < w.

(c3) Strictly monotone sequences of F[P] = [ J{F(x):x € P} are finite.

As for the proof, denote xop = ¢, and choose yy from F(xg). If yo £ xo, then xo < x1 := sup{c, yo}. Apply then
condition (c2) to choose y; from F(x;) such that yo < y;. If yo = yi, then stop. Otherwise, yp < yi, whence
x1 = sup{c, yo} < x2 = sup{c, y1}, and apply again condition (c2) to choose y, from F(x7) such that y; < y».
Continuing in the similar way, condition (c3) ensures that after a finite number of choices we get the situation, where
Yn—1 = Yn € F(x). In view of the above construction we then have x,, := sup{c, y,—1} = sup{c, y,}.

Denoting z¢ := x, and wyg := y, then wg € F(z0) and wo < sup{c, wo} = zo. If wy = z0, then z is a fixed point
of F. Otherwise, denoting z; := wg, we have z; < zo. In view of condition (c2) there exists a w; € F(z;) such that
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w1 < wy. If equality holds, then z; = wo = wy € F(z1), so that z; is a fixed point of F. Otherwise, w; < wy, denote
Z2 '= w1, and choose by (c2) such a wy € F(z) that wy < wy, and so on. Condition (c3) implies that a finite number
of steps yield the situation z,, := w;,—1 = w,, € F(zm). Thus z,, belongs to Fix F. Being a subset of F[P], strictly
monotone sequences of Fix F are finite by condition (c3). This property implies in turn that Fix F has minimal and
maximal elements.

The above described result will be generalized in Section 3. For instance, we show that F has minimal and maximal
fixed points when the above conditions (c1) and (c2) hold and condition (c3) is replaced by order compactness of the
values of F and relative chain completeness of its range F[P]. The obtained results are then used in Section 4 to
generalize existence results derived in [5-7] for inclusion problem Lu € N u, where L is a single-valued mapping from
aposet V to P, and A is a set-valued mapping from V to 2©\ @. Finally, in Section 5 results of Section 3 are applied to
study the existence of extremal Nash equilibria for a normal-form game. Existence proofs require several consecutive
applications of a recursion principle and generalized iteration methods introduced in [4,8] and presented in Section 2.

2. Preliminaries

In this section P = (P, <) is a non-empty poset. When z € P, denote
[z)={xeP:z<x} and (J={xeP: x <z}

We say that P, equipped with a topology is an ordered topological space if the order intervals [z) and (z] are closed
for each z € P. If the topology of P is induced by a metric, we say that P is an ordered metric space.

We say that a subset W of P is well-ordered if every non-empty subset of W has the least element. A well-ordered
set is a chain, i.e. totally ordered.

A basis to our considerations is the following recursion principle (cf. [8, Lemma 1.1.1]).

Lemma 2.1. Given a subset D of 2 with @ € D and a mapping f : D — P, there is a unique well-ordered chain C
in P such that

xeCifandonlyif x = f(C=), whereC~* ={yeC|y < x}. 2.1)
If C € D, then f(C) is not a strict upper bound of C.

Hint to the proof. The well-ordered chains W of P whose elements satisfy x = f(W=") are nested, and C is their
union. [J
As an application of Lemma 2.1 we get the following result (cf. [4, Lemma 2]).

Lemma 2.2. Given G : P — P and c € P there exists a unique well-ordered chain C = C(G) in P, called a w.o.
chain of cG-iterations, satisfying

x € C if and only if x = sup{c, G[C~*]}. (2.2)
Proof. Denoting D = {(W C P : W is well-ordered and sup{c, G[W]} exists}, and defining f(W) =

sup{c, G[W]}, W € D, we obtain a mapping f : D — P, and (2.2) is reduced to (2.1). Thus, by Lemma 2.1
there is a unique well-ordered chain C in P with (2.2). O

A subset W of a chain C is called an initial segment of C if x € W and y < x imply y € W. The following
application of Lemma 2.1 is also used in the sequel.

Lemma 2.3. Let F: P — 2F \ @ and c € P be given. Denote by G the set of all selections G from F, i.e.,
G:={G:P— P|G(x)e F(x)forall x € P). (2.3)

For every G : P — P denote by Cg the longest such an initial segment of the w.o. chain C(G) of cG-iterations that
the restriction G|Cg of G to Cg is increasing. Define a partial ordering < on G as follows.

(O) F < G ifand only if CF is a proper initial segment of Cg and G|Cr = F|CF.

Then (G, <) has a maximal element.
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