
Scheduling optional computations for adaptive real-time systems

Charlie McElhone *, Alan Burns

Real-Time Systems Research Group, Department of Computer Science, University of York, xxxx, UK

Received 23 July 1997; received in revised form 19 March 1998; accepted 11 September 1998

Abstract

At present, the critical computations of real-time systems are guaranteed before run-time by performing a worst-case

analysis of the system's timing and resource requirements. The result is that real-time systems are engineered to have

spare capacity, under normal operation. A challenge of current research is to make use of this spare capacity, in order to

satisfy requirements for adaptivity in the system. Adaptivity can be implemented by optional computations with ®rm

deadlines, which can be guaranteed at run-time by the use of ¯exible scheduling. This report assumes that the algorithms

which attempt to guarantee optional computations at run-time, actually run on the same processor as the optional and

critical computations themselves. The report starts with a brief survey of the complex requirements for adaptivity within

real-time systems. Such requirements can include task hierarchies composed of interdependent subtasks each with its

own utility. Evidence is cited which indicates that the run-time support for a computational model which supports all

such requirements, would incur overheads so large, that little spare capacity would remain for the optional compu-

tations themselves. Following this, the report presents a constrained computational model, which, it is claimed, could be

cost-e�ectively supported at run-time. The model is nevertheless general enough to satisfy many of the requirements for

adaptivity. The constrained model uses Best E�ort Admissions Policy to arbitrate between three categories of optional

computation, each with its own utility level. The viability of the constrained model is demonstrated by simulation

studies which compare the performance of the model to that of First-Come-First-Served Admissions Policy. Ó 2000

Elsevier Science B.V. All rights reserved.

Keywords: Real-time; Scheduling; Computational model; Guarantee algorithms; Flexible scheduling; Optional

computations

www.elsevier.com/locate/sysarc
Journal of Systems Architecture 46 (2000) 49±77

* Corresponding author. Address: Teesside University, School of Computing and Maths, Middelsbrough TS1 3BA, UK. Tel.: 44

1742 342678; fax: 44 1642 230527; e-mail: c.g.mcelhone@tees.ac.uk.

1383-7621/00/$ ± see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 1 3 8 3 - 7 6 2 1 (9 8) 0 0 0 5 8 - 7

1. Introduction

According to Stankovic [14] the next generation
of real-time systems will be more complex and
capable of adaptivity, as well as meeting their time
constraints for mission and safety-critical
functions. Currently, the critical functions of real-
time systems are guaranteed before run-time by
performing a worst-case analysis of the system's
timing and resource requirements. The result is
that real-time systems are engineered to have spare
capacity, under normal operation. The work of
this report focuses on using the spare process-
ing capacity to provide adaptivity within the
system.

Liu [8] has divided real-time computations into
those which are mandatory and those which are
optional. Mandatory computations, for example
critical tasks, must be guaranteed before run-time.
In contrast, optional computations can provide
adaptivity and need not be guaranteed before
run-time. However, optional computations may
have ®rm deadlines which means that, although
missing such deadlines is not catastrophic, it could
result in a signi®cant loss of utility to the system.
Liu describes [9] how optional computations can
be used in the implementation of techniques
which support adaptivity, such as Imprecise Com-
putations, Sieve Functions, Multiple Versions,
etc.

Optional computations can be scheduled, and
even guaranteed, at run-time, by methods of ¯ex-
ible scheduling. The Spring project [15] supports
¯exible scheduling by allowing optional computa-
tions to be guaranteed, on-line, on the node on
which they arise. If this is not possible, then at-
tempts can be made to guarantee the optional
computations on other nodes of the system. An
algorithm used to guarantee the schedulability of
optional computations is called a guarantee algo-
rithm. A guarantee algorithm ascertains whether a

given optional computation can be scheduled
within its deadline, according to whatever sched-
uling policy (e.g. Deadline Monotonic Scheduling
[1]) is in force.

Each optional computation may be associated
with a value called its utility. This value gives a
measure of the service which the computation
provides for the system when it has completed.
Admission policies may be used to arbitrate be-
tween optional computation which are competing
to be guaranteed, and have di�erent utilities. An
example of an admission policy is Best E�ort [10]
in which an optional computation of high utility
may abort optional computations of lower utility,
in order that the high utility computation may be
guaranteed.

Flexible scheduling can require run-time sup-
port which incurs prohibitive overheads when
executed on the same processor as the mandatory
and optional computations themselves (see
Section 3). Previous research e�orts [13,16] have
used specialised or additional hardware in order to
reduce the e�ect of these overheads. This report
presents a di�erent approach by arguing that the
run-time support for ¯exible scheduling can be
made to perform cost-e�ectively on a conven-
tional processor which also runs mandatory and
optional computations. This is achieved by the
adoption of a constrained computational model,
which reduces the overheads required for run-time
support.

Section 2 reviews some of the complex appli-
cation requirements for adaptivity (such as task
hierarchies with interdependent subtasks) which
optional computations could support. Section 3
provides evidence that the provision of complex
run-time support for such requirements would in-
cur prohibitive overheads. Subsequent sections
discuss and evaluate the constrained computa-
tional model which reduces the overheads of run-
time support.

50 C. McElhone, A. Burns / Journal of Systems Architecture 46 (2000) 49±77

http://isiarticles.com/article/7171

