
Generating test sequences using symbolic execution

for event-driven real-time systems

Nam Hee Lee*, Sung Deok Cha

Division of Computer Science and AITrc, Department of Electrical Engineering and Computer Science, KAIST, 373-1,

Gusung-Dong, Yusung-Gu, Daejon, South Korea

Received 11 November 2002; accepted 18 April 2003

Abstract

Real-time software, often used to control event-driven process control systems, is usually structured as a set of concurrent and interacting

tasks. Therefore, output values of real-time software depend not only on the input values but also on internal and nondeterministic execution

patterns caused by task synchronization. In order to test real-time software effectively, one must generate test cases which include

information on both the event sequences and the times at which various events occur. However, previous research on real-time software

testing focused on generating the latter information. Our paper describes a method of generating test sequences from a Modechart

specification using symbolic execution technique. Based on the notion of symbolic system configurations and the equivalence definitions

between them, we demonstrate, using the railroad crossing system, how to construct a time-annotated symbolic execution tree and generate

test sequences according to the selected coverage criteria.

q 2003 Elsevier B.V. All rights reserved.

Keywords: Real-time system testing; Symbolic execution; Modechart

1. Introduction

Dependable real-time software must produce function-

ally correct results within the specified time intervals.

Validation of real-time software can be particularly difficult

since it often consists of cyclic and interacting tasks,

exhibiting a large number of nondeterministic execution

patterns for a given input set. Formal verification and testing

is well-known and complementary software quality assur-

ance approaches. Although formal verification made

impressive technical advances to the degree that they are

used on large and complex industrial projects [1,2], it does

not eliminate the need for testing. It is our strong belief that

testing will always remain an essential and indispensable

component of any software quality assurance program.

Many testing techniques have been proposed, but

relatively few results are provided for real-time software.

Input values alone are sufficient as test cases for sequential

software, and input sequences which can exercise a

sequence of synchronization are necessary for concurrent

software. However, for typical event-driven real-time

software, repeated runs using the same input values and

sequences do not necessarily follow the identical execution

paths and produce the same results. Therefore, both the

event sequences and the time of each event occurrence must

be included in test cases for real-time software.

There are only a few works on the testing of the temporal

behavior of real-time systems [3–5]. In Ref. [3], a technique

for generating test cases from TRIO specification is

introduced. It extends the classical temporal logic to deal

explicitly with time measures, and TRIO formulas can be

automatically checked for satisfiability or validity. During

the interpretation of a formula F specifying a property of a

system, behaviors of the system compatible with F are

generated: they are called histories. These histories are used

as test cases. In Ref. [4], a system is modelled with a

formally defined SA/SD-RT notation and translated into the

time reachability tree for representing the behavior of the

system. Each path from the root of the tree to its leaves

represents a potential test case.

In Ref. [5], a technique for testing timing constraints of

real-time systems is presented. A constraint graph is used

for describing the various timing constraints the system

0141-933/03/$ - see front matter q 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0141-9331(03)00102-9

Microprocessors and Microsystems 27 (2003) 523–531

www.elsevier.com/locate/micpro

* Corresponding author.

E-mail address: nhlee@salmosa.kaist.ac.kr (N.H. Lee).

http://www.elsevier.com/locate/micpro


must satisfy. Timing constraints among various events are

shown on the edges of the graph. For example, the constraint

graph shown in Fig. 1 indicates that the system is initially in

the idle state and that the input event BC, indicating the

detection of a train approaching the crossing, may occur at

an arbitrary and unknown time ½0;1Þ: It also shows that the

system is required to generate the output event DOWN within

5 time units following the receipt of the BC. Similarly, at an

arbitrary time in the future, an input event PASSED is

expected to occur. However, the occurrences of the events

BC and PASSED must be separated by at least 300 time

units. Finally, it is a system requirement to generate the

output event UP within 5 time units following the

occurrence of the input event PASSED.

Clarke [5] treated the time interval as another input

domain and used traditional domain testing technique.

While constraint graph-based approach is useful in

generating test cases for real-time software, Clarke did not

address how constraint graphs can be automatically

generated from a formal specification. This paper bridges

the gap by illustrating how such task can be accomplished

on a Modechart specification [6] (Fig. 2).

Some authors have proposed coverage criteria to the

problem of testing real-time software [3–5,7]. In Ref. [7],

test adequacy criteria based on coverage measures of Petri

nets topology for concurrent and real-time systems are

presented. Specifically, these criteria are based on firing or

transition coverage over Petri nets. In Ref. [3], since the

actual test case is a subset of the allowed traces of the

system, some heuristic techniques are defined to select a

subset of all possible test cases for a given specification.

These criteria are based on the constructs of the TRIO

specifications. Ref. [4] describes how to restrict test cases

according to different coverage criteria because the time

reachability graph would become large even for small-scale

systems.

In this paper, we propose coverage criteria designed to

test Modechart specification and discuss how symbolic

execution technique can be used to generate test cases. We

choose Modechart because it provides a rich set of visual

constructs with which one can represent various modes the

system components can be in and timing constraints among

them. We use symbolic execution technique, which treats

the time as symbolic values, for generating test sequences.

The notion of symbolic system configuration is defined, and

a time-annotated symbolic execution tree (TSET) is

generated by symbolically executing Modechart specifica-

tion. Finally, the test sequences are generated from TSET

based on the selected coverage criteria and represented as

the constraint graph.

The rest of our paper is organized as follows. Modechart

specification language is briefly introduced in Section 2.

Some coverage criteria of event-driven real-time systems

are defined in Section 3, and procedures for constructing

TSET are explained in Section 4. We demonstrate, using the

railroad crossing system, how to generate constraint graphs.

Section 5 concludes the paper.

2. Modechart

Modechart is a visual language devised to specify

the behavior of real-time systems [6]. Modechart

constructs include modes, which are analogous to states in

Statecharts [8]; actions, which assign values to data

variables and require at least one time unit to complete;

and events, which are instantaneous. Events can be

classified into external, mode entry, mode exit, start, and

stop events. External events represent changes in the system

environment, mode entry and exit events mark entry into or

exit from a mode, and start and stop events mark the start

and stop of an action. Modechart borrows compact

Statecharts notations for representing concurrent states

and provides constructs to denote various timing require-

ments such as delays, deadlines, and time intervals. In

addition, Modechart uses a discrete time model: its delay

and deadlines are represented as non-negative integers.

Modechart formalism is supported by a software toolset

including an editor, a simulator, a verifier, and a code

generator [9].

In Modechart, modes may be composed in either serial or

parallel manner. Modechart’s notion of serial and parallel

modes corresponds to OR and AND composition in

Statecharts. If M is a serial mode with child modes M1

and M2; at any given time the system can be in exactly one

of M1 and M2: If M is a parallel mode with child modes M1

and M2; then when the system is in M; it is simultaneously in

both modes M1 and M2: Mode transition, indicating a change

Fig. 1. A constraint graph for railroad crossing.

Fig. 2. Our approach for generating test sequences using symbolic

execution.

N.H. Lee, S.D. Cha / Microprocessors and Microsystems 27 (2003) 523–531524



http://isiarticles.com/article/7208

