
A capacity sharing and stealing strategy for open real-time systems

Luís Nogueira *, Luís Miguel Pinho
CISTER Research Centre, School of Engineering of the Polytechnic Institute of Porto (ISEP/IPP), Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal

a r t i c l e i n f o

Article history:
Received 28 November 2008
Received in revised form 11 January 2010
Accepted 22 February 2010
Available online 3 March 2010

Keywords:
Open real-time systems
Dynamic scheduling
Resource reservation
Residual capacity reclaiming
Reserved capacity stealing
Shared resources
Precedence constraints

a b s t r a c t

This paper focuses on the scheduling of tasks with hard and soft real-time constraints in open and
dynamic real-time systems. It starts by presenting a capacity sharing and stealing (CSS) strategy that sup-
ports the coexistence of guaranteed and non-guaranteed bandwidth servers to efficiently handle soft
tasks’ overloads by making additional capacity available from two sources: (i) reclaiming unused
reserved capacity when jobs complete in less than their budgeted execution time and (ii) stealing
reserved capacity from inactive non-isolated servers used to schedule best-effort jobs.

CSS is then combined with the concept of bandwidth inheritance to efficiently exchange reserved band-
width among sets of inter-dependent tasks which share resources and exhibit precedence constraints,
assuming no previous information on critical sections and computation times is available. The proposed
Capacity Exchange Protocol (CXP) has a better performance and a lower overhead when compared
against other available solutions and introduces a novel approach to integrate precedence constraints
among tasks of open real-time systems.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

As an increasing number of users run both real-time and tradi-
tional desktop applications in the same system the issue of how to
provide an efficient resource utilisation in this highly dynamic,
open, and shared environment becomes very important. The need
arises from the fact that independently developed services can en-
ter and leave the system at any time, without any previous knowl-
edge about their real execution requirements and tasks’ inter-
arrival times.

For most of these systems, the classical real-time approach
based on a rigid offline design and worst-case execution time
(WCET) assumptions would keep resources unused for most of
the time. Usually, tasks’ WCET is rare and much longer than the
average case. At the same time, it is increasingly difficult to com-
pute WCET bounds in modern hardware without introducing
excessive pessimism [1]. Such a waste of resources can only be jus-
tified for very critical systems in which a single missed deadline
may cause catastrophic consequences.

A more flexible scheduling approach is then needed in order to
increase resource usage. Flexibility is particularly important for
small embedded devices used in consumer electronics, telecom-
munication systems, industrial automation, and automotive sys-
tems. In fact, in order to satisfy a set of constraints related to
weight, space, and energy consumption, these systems are typi-

cally built using small microprocessors with low processing power
and limited resources.

Guarantees based on average estimations are typically accept-
able for soft real-time tasks since a deadline miss does not consti-
tute a system or application failure but it is only less satisfactory
for the user. Nevertheless, when scheduling soft tasks based on
average estimated needs any chosen approach must handle the
case when a task needs to execute more than its guaranteed
reserved time. Not only it is desirable to achieve temporal isolation
among soft tasks as well as the schedulability of hard tasks must
not be compromised.

In [2], Mercer et al. propose a scheme based on capacity
reserves to remove the need of knowing the WCET of each task
under the Rate Monotonic [3] scheduling policy. A reserve is a
couple ðCi; TiÞ indicating that a task si can execute for at most Ci

units of time in each period Ti. If a task instance needs to execute
for more than Ci, the remaining portion of the instance is scheduled
in background.

Based on a similar idea of capacity reserves, Abeni and Buttazo
[4] proposed the Constant Bandwidth Server (CBS) scheduler to
handle soft real-time requests with a variable or unknown execu-
tion behaviour under the Earliest Deadline First (EDF) [3] schedul-
ing policy. To avoid unpredictable delays on hard real-time tasks,
soft tasks are isolated through a bandwidth reservation mecha-
nism, according to which each soft task gets a fraction of the CPU
and it is scheduled in such a way that it will never demand more
than its reserved bandwidth, independently of its actual requests.
This is achieved by assigning each soft task a deadline, computed
as a function of the reserved bandwidth and its actual requests.

1383-7621/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysarc.2010.02.003

* Corresponding author. Tel.: +351 22 8340529; fax: +351 22 8340525.
E-mail addresses: lmn@isep.ipp.pt (L. Nogueira), lmp@isep.ipp.pt (L.M. Pinho).

Journal of Systems Architecture 56 (2010) 163–179

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc

http://dx.doi.org/10.1016/j.sysarc.2010.02.003
mailto:lmn@isep.ipp.pt
mailto:lmp@isep.ipp.pt
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


If a task requires to execute more than its expected computation
time, its deadline is postponed so that its reserved bandwidth is
not exceeded. As a consequence, overruns occurring on a served
task will only delay that task, without compromising the band-
width assigned to other tasks.

However, with CBS, if a server completes a task in less than its
budgeted execution time no other server is able to efficiently reuse
the amount of computational resources left unused. To overcome
this drawback, CBS has been extended by several reclaiming
schemes [5–9] proposed to support an efficient sharing of compu-
tational resources left unused by early completing tasks. Such tech-
niques have been proved to be successful in improving the
response times of soft real-time tasks while preserving all hard
real-time constraints.

Nevertheless, not all computational tasks in modern open real-
time systems follow a traditional periodic pattern. For example,
aperiodic complex optimisation tasks may take varying amounts
of time to complete depending on the desired solution’s quality
or current state of the environment [10–15]. Furthermore, the
existing reclaiming schemes are unable to donate reserved, but still
unused, capacities to currently overloaded servers.

Based upon a careful study of the ways in which unused re-
served capacities can be more efficiently used to meet deadlines
of tasks whose resource usage exceeds their reservations, our pre-
vious work [16] proposed the coexistence of the traditional isolated
servers with a novel non-isolated type of servers, combining an effi-
cient reclamation of residual capacities with a controlled isolation
loss. The goal of the Capacity Sharing and Stealing (CSS) scheduler
is to reduce the mean tardiness of periodic guaranteed jobs by han-
dling overloads with additional capacity available from two
sources: (i) by reclaiming unused allocated capacity when jobs
complete in less than their budgeted execution time; and (ii) by
stealing allocated capacities from inactive non-isolated servers
used to schedule aperiodic best-effort jobs.

However, CSS assumes tasks to be independent. A challenging
problem in open real-time systems is how to schedule inter-depen-
dent tasks that share resources and exhibit precedence constraints
without a complete previous knowledge about their actual runtime
behaviour. The Capacity Exchange Protocol (CXP) [17] builds upon
CSS and integrates its capacity sharing and stealing strategy with
the concept of bandwidth inheritance [18] to mitigate the cost of
blocking on soft real-time tasks whose actual execution behaviour
is only known by executing tasks until completion. While preserv-
ing the isolation principles of independent tasks, upon blocking, a
task is allowed to be executed on more than its dedicated server,
efficiently exchanging reserved capacities among servers to reduce
the undesirable effects caused by inter-task blocking.

In this paper we provide a complete and consistent description
of these protocols and extend the conducted evaluation, simulta-
neously dealing with capacity sharing, stealing and exchanging.
More important, the paper also provides a proof of correctness of
the proposed runtime exchange of reserved capacities. Hard sched-
ulability guarantees can be provided either for independent and in-
ter-dependent task sets, even when hard and soft real-time tasks
do share resources and exhibit precedence constraints in open
real-time systems.

In the remainder of this paper, we describe the system model
and used notation in Section 2. Section 3 analyses the most signif-
icant scheduling approaches proposed to improve the performance
of soft real-time tasks and introduces the need for the novel capac-
ity sharing and stealing approach described in Section 4. The cor-
rectness of the proposed runtime exchange of reserved capacities
for independent task sets is proved in Section 5. CXP is described
in detail in Sections 6 and 7, as a way to efficiently support shared
resources and precedence constraints among inter-dependent task
sets of open real-time systems. Although the goal of CXP is to min-

imise the cost of blocking among soft real-time tasks, Section 8 de-
scribes how hard schedulability guarantees can still be provided
even when hard and soft real-time tasks share resources, at the ex-
pense of some pessimism on the computation of blocking times
when tasks access (nested) critical sections. Section 9 presents
and analyses the achieved evaluation results. Finally, Section 10
concludes this paper.

2. System model

This paper focuses on dynamic open real-time systems where all
services execute on a single shared processor, the sum of the re-
served capacities is no more than the maximum capacity of the pro-
cessor, and the scheduler does not have any previous complete
knowledge about the execution requirements of soft real-time tasks.
We make the reasonable assumption that whenever a service arrives
to the system it advertises its requirements on a certain amount of
the system’s resources based on expected average needs for soft
real-time tasks and WCET measures for hard real-time tasks. If, gi-
ven the current system’s load, the required amount can be guaran-
teed, the service is accepted and the requested amount is reserved.

A service is composed of a set of hard and/or soft real-time
tasks. Each real-time task si can generate a virtually infinite se-
quence of jobs. The jth job of task si arrives at time ai;j, is released
to the ready queue at time ri;j, starts to be executed at time si;j with
deadline di;j ¼ ri;j þ pi, with pi being the period of si, and finishes its
execution at time fi;j. These times are characterised by the relations
ai;j 6 ri;j 6 si;j 6 fi;j.

For a hard real-time task si, the system must provide an a priori
guarantee that every job must complete at a time fi;j 6 di;j. As such,
pi refers to the minimum inter-arrival time between successive
jobs of si so that ai;jþ1 P ai;j þ pi and its execution requirements
ei;j are characterised by the task’s WCET.

For soft real-time tasks, the timing constraints are more relaxed.
In particular, for a soft task si; pi represents the expected inter-ar-
rival period between successive jobs. As such, the arrival time ai;j of
a particular job is only revealed at runtime and the exact execution
requirements ei;j can only be determined by actually executing the
job to completion until time fi;j.

Each soft or hard real-time task si is scheduled through an ab-
stract entity Si called server. As such, all the jobs generated by task
si are dedicated to server Si. Each server Si is characterised by a pair
ðQ i; TiÞ, where Qi is the server’s maximum reserved capacity and Ti

its period. For a hard real-time task si, its dedicated server Si has a
reserved capacity Q i equal to the task’s WCET and a period Ti equal
to the task’s period. For soft real-time tasks, Q i and Ti are set based
on the served tasks’ expected average values. It is important to
point out that this paper does not deal with policies to optimally
assign or dynamically change the servers’ parameters according
to the actual needs of the served soft real-time tasks either based
on some heuristic algorithms or feedback control schemes as ap-
pear, for example, in [19].

At each instant, the following values are associated with a ser-
ver Si: its currently assigned deadline di

k, its remaining execution
capacity 0 6 ci

k 6 Qi, the amount of residual capacity ri
k 6 ci

k that
can be reclaimed by other servers, and its currently assigned
replenishment time hi

k ¼ di
k. If at time t; Si finishes the execution

of its currently served job without exhausting its reserved execu-
tion capacity ci

k and it has no pending work, the remaining amount
ci

k > 0 sets the server’s residual capacity ri
k ¼ ci

k that can be re-
claimed (ci

k is subsequently set to zero). By pending work we refer
to the case when there exists at least a served job such that
ri;j 6 t < fi;j.

This paper considers two different types of servers: isolated
servers used to schedule periodic and sporadic guaranteed tasks

164 L. Nogueira, L.M. Pinho / Journal of Systems Architecture 56 (2010) 163–179



http://isiarticles.com/article/7249

