J. Parallel Distrib. Comput. 71 (2011) 1411-1425

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

An optimal boundary fair scheduling algorithm for multiprocessor

real-time systems

Dakai Zhu®*, Xuan Qi?, Daniel Mossé P, Rami Melhem?

2 University of Texas at San Antonio, San Antonio, TX 78249, United States
b University of Pittsburgh, Pittsburgh, PA 15260, United States

ARTICLE INFO

ABSTRACT

Article history:

Received 6 September 2010
Received in revised form

12 May 2011

Accepted 16 June 2011
Available online 26 June 2011

Keywords:

Real-time systems

Multiprocessor

Periodic tasks

Optimal scheduling algorithms
Boundary fairness (Bfair) scheduling

With the emergence of multicore processors, the research on multiprocessor real-time scheduling has
caught more researchers’ attention recently. Although the topic has been studied for decades, it is still an
evolving research field with many open problems. In this work, focusing on periodic real-time tasks with
quantum-based computation requirements and implicit deadlines, we propose a novel optimal scheduling
algorithm, namely boundary fair (Bfair), which can achieve full system utilization as the well-known
Pfair scheduling algorithms. However, different from Pfair algorithms that make scheduling decisions and
enforce proportional progress (i.e., fairness) for all tasks at each and every time unit, Bfair makes scheduling
decisions and enforces fairness to tasks only at tasks’ period boundaries (i.e., deadlines of periodic tasks).
The correctness of the Bfair algorithm to meet the deadlines of all tasks’ instances is formally proved
and its performance is evaluated through extensive simulations. The results show that, compared to that
of Pfair algorithms, Bfair can significantly reduce the number of scheduling points (by up to 94%) and
the overhead of Bfair at each scheduling point is comparable to that of the most efficient Pfair algorithm
(i.e., PD?). Moreover, by aggregating the time allocation of tasks for the time interval between consecutive
period boundaries, the resulting Bfair schedule can dramatically reduce the number of required context
switches and task migrations (as much as 82% and 85%, respectively) when compared to those of Pfair

schedules, which in turn reduces the run-time overhead of the system.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

For different (e.g., periodic, sporadic and aperiodic) real-time
tasks to be executed on systems with a single or multiple pro-
cessing units, the scheduling problem of how to guarantee various
hard and/or soft timing constraints has been studied extensively in
the last few decades [42]. Although the scheduling theory for
uniprocessor real-time systems has been well developed, such as
the optimal EDF (earliest deadline first) and RM (rate-monotonic)
scheduling algorithms [35], the scheduling for multiprocessor real-
time systems is still an evolving research field and many problems
remain open due to their intrinsic difficulties. With the emergence
of multicore processors, there is a reviving interest in schedul-
ing algorithms for multicore/multiprocessor real-time systems and
many interesting results have been reported in recent years, such
as [5,9-11,20,24,27,26,31,33,34].

Traditionally, there are two major approaches for scheduling
real-time tasks in multiprocessor systems: partitioned and global
scheduling [19,21]. In partitioned scheduling, each task is assigned
to a specific processor and processors can only execute the

* Corresponding author.
E-mail address: dzhu@cs.utsa.edu (D. Zhu).

0743-7315/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j,jpdc.2011.06.003

tasks that are assigned to them. Although the well-established
uniprocessor scheduling algorithms (such as EDF and RMS [35])
can be employed on each processor after partitioning tasks to
processors, finding a feasible partition of tasks to processors has
been shown to be NP-hard [19,21]. For the global scheduling, on
the other hand, all ready tasks are put into a shared single queue
and each idle processor fetches the next highest priority ready
task from the global queue for execution. Despite its flexibility that
allows tasks to migrate and execute on different processors, it has
been shown that simple global scheduling policies (e.g., global-EDF
and global-RMS) could fail to schedule task sets with extremely
low system utilization [21]. In addition, neither partitioned nor
global scheduling dominates one another as there are task sets that
can be scheduled by one approach but not the other, and vice versa.

Recently, as a hierarchical approach, cluster scheduling has been
investigated. In this approach, processors are grouped into clusters
and tasks are partitioned among different clusters. For tasks that
are allocated to a cluster, different global scheduling policies
(e.g., global-EDF) can be adopted within the cluster [9,43]. Note
that, cluster scheduling is a general approach, which will reduce
to partitioned scheduling when there is only one processor in each
cluster. For the case of a single cluster containing all the processors,
it will reduce to the global scheduling.


http://dx.doi.org/10.1016/j.jpdc.2011.06.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:dzhu@cs.utsa.edu
http://dx.doi.org/10.1016/j.jpdc.2011.06.003

1412 D. Zhu et al. / ]. Parallel Distrib. Comput. 71 (2011) 1411-1425

Since the shared cache architecture in multicore processors
can significantly alleviate the task migration overhead in the
global scheduling, in this work, we study an optimal global
scheduling algorithm for a set of periodic real-time tasks with
implicit deadlines (i.e., the relative deadlines of tasks equal
their periods), which can achieve full system utilization. Fairness
has been traditionally utilized to guarantee quality of service
(QoS) in computing systems (e.g., in wireless networks [29]).
In [12], Baruah et al. exploited fairness as a vehicle to design the
first well-known quantum-time-based optimal global scheduling
algorithm. Specifically, the proportional fair (Pfair) scheduler
enforces proportional progress (i.e., fairness) for all tasks at each
and every time unit, which can achieve full system utilization
while guaranteeing that all tasks meet their deadlines. Several
sophisticated Pfair variations have also been studied, such as
PD [13] and PD? [3]. Recently, assuming that the time domain is
continuous, the T-L Plane based algorithms were studied, which
can also achieve full system utilization [15,23]. Following this
line of research, a generalized deadline-partitioned fair (DP-Fair)
scheduling model was investigated in [34]. However, since each
task needs to get its time share within any allocation interval
(e.g., time interval between adjacent deadlines of tasks), the
time allocation to tasks can be arbitrarily small, which can lead
to extremely high scheduling overhead for those scheduling
algorithms.

Note that, the proportional fairness is actually a much more
strict requirement than that of the original scheduling problem,
where the only requirement is to have each task instance get
enough time allocation and complete its execution before its
deadline. Moreover, by making scheduling decisions at each and
every quantum time unit, the Pfair algorithms can also lead to high
scheduling overhead. Observing the fact that a periodic real-time
task can only miss its deadline at its period boundary, in this work,
we develop an optimal boundary fair (Bfair) scheduling algorithm,
which makes scheduling decisions and ensures fairness for tasks
only at their period boundaries (which are tasks’ arrival times as
well). Specifically, at each period boundary, the Bfair algorithm will
allocate processors to tasks for the time units between the current
period boundary and the next period boundary of tasks. Similar to
the Pfair algorithms, to prevent deadline misses, Bfair also ensures
fairness for tasks, but only at the period boundaries. That is, at each
period boundary time, the allocation error for any task is less than
one time unit.

We have formally proved the correctness of the Bfair algorithm
on meeting the deadlines of all tasks’ instances while achieving
100% system utilization. The time complexity for an efficient
implementation of Bfair can be O(n) (where n is the number of
tasks in the system) at each scheduling point, which is the same
as that of the Pfair algorithm [12]. However, Bfair can significantly
reduce the number of scheduling points (by up to 94% in our
simulations), and thus reduce the overall scheduling overhead.
Moreover, our simulations show that the time overhead of Bfair
for each scheduling point as well as for generating the whole
schedule is comparable to that of the most efficient Pfair algorithm,
PD? [3]. Furthermore, by aggregating the time allocation of tasks
for the time interval between consecutive period boundaries, the
resulting Bfair schedule can also dramatically reduce the number
of context switches and task migrations, as much as 82% and 85%,
respectively, when compared to those of Pfair schedules. Such
reduction in context switches and task migrations can significantly
reduce the run-time overhead, which is specially valuable for real-
time systems.

There are several contributions of this work:

e First, we introduce the concept of boundary fairness for the
periodic real-time scheduling problem, which is fair enough to
get a feasible schedule while only requires scheduling decisions
at tasks’ period boundaries (i.e., deadlines and arrival times of
tasks);

e Second, we propose an optimal and efficient Bfair scheduling
algorithm and prove its correctness to generate a feasible
schedule while achieving full system utilization;

e Finally, we evaluate the proposed Bfair algorithm and show its
superior performance on reducing scheduling overhead when
comparing to Pfair algorithms through extensive simulations.

The remainder of this paper is organized as follows. The related
work is reviewed in Section 2. Section 3 defines the related
notations and formulates the problem, which is further illustrated
through a concrete motivating example. Section 4 presents the
Bfair algorithm and its complexity analysis. The correctness of the
Bfair algorithm is formally proved in Section 5. Simulation results
are reported and discussed in Section 6. Section 7 gives out our
conclusions.

2. Related work

Although rate-monotonic (RM) scheduling and earliest dead-
line first (EDF) have been shown to be optimal in uniprocessor
periodic real-time systems, for static and dynamic priority assign-
ments, respectively [35], neither of them is optimal for multipro-
cessor real-time systems [21]. Based on the partitioned scheduling,
Oh and Baker studied the rate-monotonic first-fit (RMFF) heuris-
tic and showed that RMFF can schedule any system of periodic
tasks with total utilization bounded by m(2'/2 — 1), where m is
the number of processors in the system [41]. Later, a better bound
of (m + 1)(2"/™+D — 1) for RMFF was shown in [37]. In [6], An-
dersson and Jonsson proved that the system utilization bound can
reach 50% for a partitioned RM scheduling by exploiting the har-
monicity of tasks’ periods. For the partitioned scheduling with ear-
liest deadline first (EDF) first-fit heuristic, Lopez et al. showed that
any task set can be successfully scheduled if the total utilization is
no more than (8 - m + 1)/(B + 1), where B = |1/a] and « is
the maximum task utilization of the tasks considered [38]. Follow-
ing similar techniques, the utilization bounds for partitioned-EDF
in uniform multiprocessor systems (where the processors have the
same functionalities but different processing speeds) were devel-
oped by Darera in [17].

For global scheduling based EDF, it has been shown that a task
set is schedulable on m processors if the total utilization does not
exceed m(1 — «) + « [25]. Similarly, for global-RMS scheduling,
system utilization of (m/2)(1 — «) + « can be guaranteed [8].
Andersson et al. also studied one scheduling algorithm named
RM-US, where tasks with utilization higher than some threshold 6
have the highest priority [4]. For = 1, Baker showed that RM-US
can guarantee a system utilization of (m + 1) /3 [8].

To further improve the achievable system utilization and reduce
the scheduling overhead, Andersson et al. proposed the EKG
algorithm based on the concept of portion tasks [7]. In EKG, a
separator is defined as SEP = k% for cases where k < m (m is
the number of processors) and SEP = 1 for the case of k = m.
For heavy tasks with utilization being more than SEP, they are
allocated to their dedicated processors following the conventional
partitioned-EDF scheduling. Each light task (with utilization being
no more than SEP) is split into two portion tasks only if necessary,
where the portion tasks are assigned to adjacent processors. The
worst-case system utilization bound that can be achieved by EKG
is 66% when it is configured with k = 2 that has few preemptions.
Full (i.e.,, 100%) system utilization can be achieved by setting
k = m, which can result in high scheduling overhead with many
preemptions as EKG may allocate arbitrarily small share of time to
tasks. Following the same line of research, several semi-partitioned
based scheduling algorithms have been proposed very recently,
which are different in how to handling portion tasks and thus
achieve different system utilizations [26,30-32].



ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/


http://isiarticles.com/article/7271

