
J. Parallel Distrib. Comput. 73 (2013) 851–865

Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Reliability and performance optimization of pipelined real-time
systems✩

Anne Benoit a,b,∗, Fanny Dufossé a,b, Alain Girault c, Yves Robert a,b,d
a ENS Lyon, LIP Laboratory, France
b INRIA, France
c INRIA Grenoble Rhône-Alpes, France
d University of Tennessee Knoxville, USA

h i g h l i g h t s

• Mapping pipelined real-time systems on distributed platforms.
• Comprehensive set of NP-hardness complexity results.
• Integer linear program for the exact solution of the most general problem instance.
• Two efficient heuristics compared through simulation and with respect to optimal solution.

a r t i c l e i n f o

Article history:
Received 23 July 2012
Received in revised form
23 January 2013
Accepted 20 February 2013
Available online 5 March 2013

Keywords:
Pipelined real-time systems
Interval mapping
Multi-criteria (reliability, latency, period)
optimization

Complexity results

a b s t r a c t

We consider pipelined real-time systems that consist of a chain of tasks executing on a distributed
platform. The processing of the tasks is pipelined: eachprocessor executes only one interval of consecutive
tasks. We are interested in minimizing both the input–output latency and the period of application
mapping. For dependability reasons, we are also interested inmaximizing the reliability of the system.We
therefore assign several processors to each interval of tasks, so as to increase the reliability of the system.
Both processors and communication links are unreliable and subject to transient failures.We assume that
the arrival of the failures follows a constant parameter Poisson law, and that the failures are statistically
independent events. We study several variants of this multiprocessor mapping problem, with several
hypotheses on the target platform (homogeneous/heterogeneous speeds and/or failure rates).We provide
NP-hardness complexity results, and optimal mapping algorithms for polynomial problem instances.
Efficient heuristics are presented to solve the general case, and experimental results are provided.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A pipelined real-time system [22,27] consists of a chain of tasks
executing on a distributed platform. Each task is a block of code
with a known amount of work to be processed. The role of the first
task of the chain is to acquire some data set from the environment
(thanks to sensor drivers), to process it, and finally to transmit its
result to the second task. Each subsequent task receives its input
data from its predecessor task, processes it, and transmits its result
to its successor task, except the last task that transmits it to the
environment (thanks to actuator drivers). The whole chain of tasks
is executed repeatedly, as newdata sets enter the system. Eachdata
set is input to the first task and progresses from task to task until
its processing is completed.

✩ Part of this work has appeared in ICPP’10.
∗ Correspondence to: LIP, ENS Lyon, 46 alle d’Italie, 69364 Lyon Cedex 07, France.

E-mail addresses: Anne.Benoit@ens-lyon.fr (A. Benoit), Fanny.Dufosse@inria.fr
(F. Dufossé), Alain.Girault@inria.fr (A. Girault), Yves.Robert@ens-lyon.fr
(Y. Robert).

Executing a real-time system in a pipelined way is essential
to increase the throughput, by making the best possible usage of
available resources in the distributed execution platform. Tasks
are assigned to processors using an interval mapping, which groups
consecutive tasks of the linear chain and assigns them to the
same processor. Interval mappings are more general than one-to-
one mappings, which establish a unique correspondence between
tasks and processors; they allow communication overheads to
be reduced, not to mention the many situations where there are
more tasks than processors, and where interval mappings are
mandatory. The key performance-oriented metrics to determine
the best intervalmapping are the period and the latency. The period
is the time interval between the beginning of the execution of two
consecutive data sets. Equivalently, the inverse of the period is the
throughput, which measures the aggregate rate of processing of
data. The latency is the time elapsed between the beginning and
the end of the execution of a given data set; hence, it measures the
response time of the system for processing the data set entirely.
Therefore, to minimize the period, we try to create many small
intervals so thatwe can start processing the next data set as soon as

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.02.009

http://dx.doi.org/10.1016/j.jpdc.2013.02.009
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jpdc.2013.02.009&domain=pdf
mailto:Anne.Benoit@ens-lyon.fr
mailto:Fanny.Dufosse@inria.fr
mailto:Alain.Girault@inria.fr
mailto:Yves.Robert@ens-lyon.fr
http://dx.doi.org/10.1016/j.jpdc.2013.02.009


852 A. Benoit et al. / J. Parallel Distrib. Comput. 73 (2013) 851–865

possible, while for minimizing the latency, we rather try to reduce
the sum of communication costs, and hence to split the chain of
tasks in the least possible number of intervals. As a consequence,
minimizing the latency is antagonistic to minimizing the period,
and trade-offs should be found between these two criteria.

Each data set has a deadline on the completion time of its ex-
ecution (the real-time constraint). The deadlines are related to the
period P and latency L as follows. Data sets periodically enter the
system with a given period P . Data set 0 enters the system at time
0 and has a deadline equal to L. Data set K enters the system at
time K × P and has a deadline equal to K × P + L. Accordingly, the
deadline of each data set will be met as soon as we derive a sched-
ule whose period does not exceed P , and whose latency does not
exceed L. This model is consistent with those applications found
in most safety critical real-time systems (e.g., avionics, railway or
nuclear applications [8,30]), which enforce a prescribed processing
rate and maximum response time. This leads to a global deadline
for each application instance (data set), but individual tasks dis-
tinct from the output task have no deadlines.

Besides constraints on the performance-oriented criteria, ex-
pressed as an upper bound on the period and/or the latency,
pipelined real-time systems must also meet crucial dependability
constraints, which are expressed as a lower bound on the reliability
of the mapping. Increasing the reliability is achieved by replicat-
ing the intervals onto several processors. Augmenting the replica-
tion level (defined as the average number of times each interval is
replicated) is good for reliability, but bad for period and latency,
because fewer processors will be available for executing the task
intervals. We thus have three antagonistic criteria: reliability, pe-
riod, and latency. This antagonism between the criteria makes the
problem very challenging.

A typical example of applications with real-time and reliability
constraints is encountered in the automotive industry, with the
Autosar architecture.1 Autosar consists of a hardware architecture
made of several processors (called ECUs—Electronic Computing
Units) connected by a bus, and of several software components,
each one being an embedded automotive function. Each function
is a pipelined real-time system that starts with some input drivers
that will generate a new dataset at each invocation (for instance
thewheel angular speed), followed by several software blocks, and
terminated by some actuator driver (for instance the hydraulic
brake pressure). Each such function must meet a latency (also
called the end-to-end timing constraint, from the sensor to the
actuator), a period, and a reliability constraint.

We evaluate the reliability of a single task mapped onto a pro-
cessor according to the classical model of Shatz and Wang [34],
where each hardware component (processor or communication
link) is fail-silent and is characterized by a constant failure rate per
time unit λ: the reliability of a task of duration d is therefore e−λd.
For an interval of several tasks mapped onto a single processor,
we just have to sum up the task durations, hence obtaining e−λD,
where D is the sum of task durations in the interval. For a mapping
with replication, we compute the reliability by building the Reli-
ability Block Diagram (RBD) [29,3] corresponding to this mapping.
Here we face the delicate issue that computing the reliability is ex-
ponential in the size of themapping (or equivalently the size of the
RBD). To solve this issue, we insert routing operations in the map-
ping to guarantee that the RBD is by construction serial–parallel,
therefore allowing us to compute its reliability in linear time. The
models are detailed in Section 2 and we discuss related work in
Section 3.

Our contribution is multifold. In Section 4, we show how to
compute the different objectives (reliability, expected and worst-
case latency, expected and worst-case period) for a given
multiprocessor mapping. Then, we derive complexity results for
homogeneous platforms in Section 5. We prove that:

1 AUTomotive Open System ARchitecture: http://www.autosar.org.

Fig. 1. Example of a chain of n tasks.

1. computing a mono-criterion mapping that optimizes the
reliability is polynomial (Section 5.1);

2. optimizing both the reliability and the period remains polyno-
mial (Section 5.2);

3. the problem of optimizing both the reliability and the latency is
NP-complete (Section 5.3);

4. the problem of assigning processors for a given partition of the
task chain into intervals is polynomial (Section 5.5).

Moreover, for homogeneous platforms, we provide a linear pro-
gram to solve the problem of optimization of reliability for given
bounds on period and latency in Section 5.4.

For heterogeneous platforms, we prove that themono-criterion
problem of optimizing the reliability is NP-complete, and hence all
the multi-criteria mapping problems that include the reliability in
their criteria are also NP-complete (Section 6).

We provide heuristics in Section 7 for the most general prob-
lem of optimizing the reliability under constraints on period and
latency on a heterogeneous platform, andwe conduct experiments
on homogeneous and heterogeneous platforms to assess their per-
formance (Section 8). Finally, we state some concluding remarks
and future research directions in Section 9.

2. Framework

In this section, we detail the application model, the platform
model, the failure model, and the replication model. We end
with the formal definition of themono-criterion andmulti-criteria
multiprocessor mapping problems.

2.1. Application model

An application is a chain of n tasks C = (τi)1≤i≤n. Each task τi is
a block of code that (1) receives its input from its predecessor τi−1,
(2) computes a known amount of work, and (3) produces an output
data set of a known size. Therefore, each task τi is represented by
thepair (wi, oi), wherewi is the amount ofwork and oi is the output
data size. By convention, on = 0 because τn emits its result directly
to the environment through actuator drivers. Specifying the size
of the input data set required by a task is not necessary since, by
definition of a chain, it is equal to the size of the output data set of
its immediately preceding task. Fig. 1 shows an example of a chain
composed of n tasks.

Executing τi on a processor of speed s takes wi/s units of time.
Transmitting the result of τi on a link of bandwidth b takes oi/b
units of time. Knowing the valueswi and oi is not a critical assump-
tion since worst-case execution time (WCET) analysis has been
applied with success to real-life processors actually used in em-
bedded systems. In particular, it has been applied to the most crit-
ical existing embedded system, namely the Airbus A380 avionics
software running on the Motorola MPC755 processor [15,35].

2.2. Platform model

The target platform consists of p processors connected by point-
to-point communication links. Let P be the processor set: P =
(Pu)1≤u≤p. We assume that communication links are homogeneous:
this means that all links have the same bandwidth b. On the con-
trary, each processor Pu may have a different speed su. Such plat-
forms correspond to networks of workstations with plain TCP/IP
interconnects or other LANs.

http://www.autosar.org


http://isiarticles.com/article/7278

