Working memory impairment in probands with schizoaffective disorder and first degree relatives of schizophrenia probands extend beyond deficits predicted by generalized neuropsychological impairment

S. Kristian Hill a,⁎, Alison Buchholz a, Hayley Amsbaugh a, James L. Reilly b, Leah H. Rubin c, James M. Gold d, Richard S.E. Keefe e, Godfrey D. Pearson f,g, Matcheri S. Keshavan h, Carol A. Tamminga i, John A. Sweeney j

a Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
b Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, United States
c Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
d Department of Psychiatry, University of Maryland, Baltimore, MD, United States
e Department of Psychiatry, Duke University Medical Center, Durham, NC, United States
f Department of Psychiatry and Neurobiology, Yale University, United States
g Olin Neuropsychiatry Research Center, Hartford, CT, United States
h Department of Psychiatry, University of Texas Southwestern, Dallas, TX, United States
i Olin Neuropsychiatry Research Center, Hartford, CT, United States
j Department of Psychiatry and Behavioral Sciences, Harvard Medical School, Boston, MA, United States
k Department of Psychiatry, University of Texas Southwestern, Dallas, TX, United States
l Department of Psychiatry, Duke University Medical Center, Durham, NC, United States
m Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
n Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States

ARTICLE INFO
Article history:
Received 10 March 2015
Received in revised form 4 May 2015
Accepted 7 May 2015
Available online 23 May 2015

Keywords:
Schizophrenia
Schizoaffective disorder
Bipolar disorder
Working memory
B-SNIP
Generalized cognitive deficit
Familiality

ABSTRACT
Objective: Working memory impairment is well established in psychotic disorders. However, the relative magnitude, diagnostic specificity, familiality pattern, and degree of independence from generalized cognitive deficits across psychotic disorders remain unclear.

Method: Participants from the Bipolar and Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study included probands with schizophrenia (N = 289), psychotic bipolar disorder (N = 227), schizoaffective disorder (N = 165), their first-degree relatives (N = 315, N = 259, N = 193, respectively), and healthy controls (N = 289). All were administered the WMS-III Spatial Span working memory test and the Brief Assessment of Cognition in Schizophrenia (BACS) battery.

Results: All proband groups displayed significant deficits for both forward and backward span compared to controls. However, after covarying for generalized cognitive impairments (BACS composite), all proband groups showed a 74% or greater effect size reduction with only schizoaffective probands showing residual backward span deficits compared to controls. Significant familiality was seen in schizophrenia and bipolar pedigrees. In relatives, both forward and backward span deficits were again attenuated after covarying BACS scores and residual backward span deficits were seen in relatives of schizophrenia patients.

Conclusions: Overall, both probands and relatives showed a similar pattern of robust working memory deficits that were largely attenuated when controlling for generalized cognitive deficits.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Working memory deficits are a core cognitive feature of psychotic disorders (Lee and Park, 2005; De et al., 2013; Kelleher et al., 2013a; Koychev et al., 2012; Reichenberg and Harvey, 2007). Working memory encompasses a variety of cognitive processes ranging from relatively simple encoding and maintenance to more complex manipulation of stored information. Working memory impairments for basic maintenance and rehearsal both have been reported in schizophrenia patients (Lencz et al., 2003; Reilly et al., 2006, 2007; Park and Holzman, 1993) and in their relatives (Myles-Worsley and Park, 2002; Glahn et al., 2003; Saperstein et al., 2006; Kelleher et al., 2013b). Abnormalities have also been observed when more complex processing is required (MacDonald et al., 2005; Cannon et al., 2005; Tan et al., 2007; Kim et al., 2004). In recent years working memory impairments have come into focus as a cognitive feature in bipolar disorder with psychosis (Bora et al., 2010; Glahn et al., 2006; Brandt et al., 2014), suggesting that impairment in this RDoC domain extends across disorders. Yet, the relative magnitude of impairments across psychotic disorders and the extent to which these impairments are familial (Schulze et al., 2011; Bora et al., 2008) remains unclear. No studies have directly compared simple and complex working memory processes across psychotic disorders and among their first-degree relatives.
This report was designed to 1) clarify the relative magnitude and diagnostic specificity of spatial working memory impairments (forward and backward span) across psychotic disorders, 2) examine whether forward and/or backward span impairments merely reflect the generalized cognitive impairments associated with psychotic disorders or specific informative cognitive deficits above those predicted by generalized impairments, and 3) assess the degree to which working memory impairments extend to first-degree relatives and estimate their familiarity.

2. Methods

The five-site B-SNIP consortium (Maryland Psychiatric Research Center, University of Chicago/University of Illinois at Chicago, University of Texas — Southwestern, Wayne State University/Harvard University, and the Institute of Living/Yale University) was organized to address questions about diagnostic boundaries and familiality of intermediate phenotypes in psychotic disorders.

Identical inclusion criteria and testing procedures were employed across all sites. Recruitment and clinical assessment procedures have been reported previously (Tamminga et al., 2013). Probands were required to have a diagnosis of schizophrenia, schizoaffective disorder, or bipolar disorder with a history of psychosis based on the Structured Clinical Interview for DSM Disorders (SCID) (First et al., 1995). Probands were clinically stable and on stable medication regimens for the month prior to testing. Healthy participants were recruited from the community and were required to have no personal history of a psychotic disorder or recurrent depression and no known immediate family history of these disorders.

All participants had 1) no history of seizures or head injury with loss of consciousness (>10 min), 2) no diagnosis of substance abuse in the prior 30 days or substance dependence in the prior 6-months, loss of consciousness (disorders.

Thus, neither dosage nor medication status was modeled in the analyses.

2.2. Statistical analyses

Demographic and clinical sample characteristics are presented in Table 1 for probands and Table 2 for first-degree relatives. Consistent with our prior B-SNIP reports (Hill et al., 2013, 2014), neither antipsychotic dose nor the presence (vs. absence) of current antipsychotics, mood stabilizers or antidepressants were meaningfully related to forward or backward span scores in probands or relatives (r's < 0.22).

Table 1

| Demographic and clinical data for probands with a history of psychosis and healthy controls. |
|---|---|---|---|---|
| Healthy controls | Schizophrenia | Schizoaffective | Bipolar w/ psychosis |
| n = 289 | n = 289 | n = 165 | n = 227 |
| **Age (years)** | | | | |
| Mean | SD | Mean | SD | Mean | SD | Mean | SD |
| 37.78 | 12.67 | 36.01 | 12.67 | 36.58 | 11.81 | 36.19 | 12.79 |
| **Education (years)** | | | | |
| Mean | SD | Mean | SD | Mean | SD | Mean | SD |
| 15.1 | 2.58 | 12.75 | 2.25 | 13.06 | 2.22 | 14.18 | 2.37 |
| **Wide range achievement Test–IV: Reading test (SS)** | | | | |
| Mean | SD | Mean | SD | Mean | SD | Mean | SD |
| 103.01 | 17.7 | 93.79 | 15.42 | 96.68 | 14.76 | 101.35 | 13.76 |
| **Sex** | | | | |
| Male | 123 | 42.6% | 197 | 68.2% | 67 | 40.6% | 85 | 37.4% |
| Female | 166 | 57.4% | 92 | 31.8% | 98 | 59.4% | 142 | 62.6% |
| **Race** | | | | |
| Caucasian | 181 | 62.8% | 135 | 46.7% | 89 | 53.9% | 169 | 74.4% |
| Afr.-American | 79 | 27.4% | 137 | 47.4% | 66 | 40.0% | 47 | 20.7% |
| Other | 29 | 9.7% | 17 | 5.9% | 10 | 6.1% | 11 | 4.8% |
| **Clinical variables** | | | | |
| PANSS total | 65.19 | 17.0 | 67.7 | 15.3 | 53.4 | 14.1 | F = 50.51** |
| PANSS positive | 16.6 | 5.6 | 17.7 | 4.8 | 12.8 | 4.5 | F = 52.26** |
| PANSS negative | 16.6 | 5.9 | 15.7 | 4.9 | 12.1 | 4.0 | F = 53.32** |
| YMRS | 5.3 | 5.8 | 7.0 | 6.6 | 5.9 | 6.6 | F = 3.52 |
| MADRS | 8.6 | 7.7 | 14.9 | 10.2 | 10.4 | 9.2 | F = 25.81** |

PANSS: Positive and Negative Syndrome scale; YMRS: Young Mania Rating Scale; MADRS: Montgomery–Åsberg Depression Rating Scale.

* Controls > schizophrenia, schizoaffective, and bipolar; schizoaffective > schizophrenia and bipolar.

b Disproportionate number of females in bipolar group.
c Disproportionate number of males in schizophrenia group.
d Disproportionate number of African-Americans and Caucasians in both schizophrenia and bipolar groups.
e Bipolar < schizophrenia and schizoaffective.
f Schizoaffective > schizophrenia.
g Schizoaffective > bipolar and schizophrenia.

χ² = 64.033**
χ² = 55.832**
χ² = 311
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات